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AN INTEGRAL SOLUTION TO THE FLAT-PIATE LAMINAR

BOUNDARY-I&ER FLUW EXISTING INSIDE AND AFTER EXPANSION

WA~ AND AFTER SHOCK WA~S MOVING INTO QUIESCENT FLUID

WITH PARTICULAR APPLICATION TO THE

C04PLETE SHOCK-TUBE FTOW

By Robert L. Trimpi and Nathaniel B. Cohen

SUMM.ARY

A solution to the unsteady two-dimensional lsminar boundary-layer
flow inside centered exm%nsion waves and behind both centered expansion
waves and shock waves i; obtatied by utilizing an extension of the Kdrmdn-
Pohlhausen method. The Prandtl unsteady-boundary-la~r equations are
integrated normal to the surface bounding the flow and are trmsformed
into a conical coordinate system. The resulting hyperbolic differential

● equations sre integrated in closed form for flow behtid shock waves snd
by numerical methods for the flow inside or folJ_owingexpansion waves.
An integral technique is applied at the discontinuities existing at them
trailing edge of the expansion fsm ad at contact discontinuities (entropy
discontinuities) so that the characteristic solution may proceed across
these discontinuities.

The solution to the two-dimensional.unsteady lsminar boundary layer
existing at all points in an air-air shock tube is obtained by this method.
A much shorter approximate method of solution is devised and is found to
agree favorably with this method. This approximate method is used to
rmedict the flow in 4@mw=fi and heli~-a~ shock t*eso Plots of
&ll heat-transfer ra;e ad skti friction
hydrogen-air shock tubes are presented.

INTRODWION

h air-air, helim-air, ~d

Impetus to the study of time-dependent boundary layers has arisen
* because of the increased importance of the flows initiated along the

ground and over buildings by the detonation of nuclear devices and of

A the air flow over missiles in hypersonic flight. The time-dependent
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nature of the nuclear-shock-initiatedflows is obvious; whereas hypersonic e

missile flight presents two less obvious problems, one of which is direct
and the other, indirect. The direct problem arises because of the time-
wise variation of the differences between conditions of the outer potential

u

flow at the edge of the boundary layer and of the missile skin as the mis-
sile encounters rapidly varying smbient conditions during its flight. To
date, because of the relative rapidity with which the fluid boundary layer
is able to adjust to changes, the direct problem has been treated as a
quasi-steady one; that is, for given wall snd local conditions at a the
in a time-dependent flow, the boundary @yer is equivalent to that in a
steady flow for the ssme stresm and wall conditions. The main apparent
difficulty in this approach is the prediction and simulation of the cor-
rect wall conditions /sincethey are in turn dependent on the time history
of the boundary layer.

The lmdirect problem arises from the use of shock tubes as a mesns
of experimentally simulating the very high stagnation temperatures encoun-

—

tered in missile flight for purposes of obtaining data regarding heat
transfer, skin friction, ionization, dissociation, smd so forth. Correct
interpretation of shock-tube test results requires a lmowledge of the tw- . ._
dependent flow inherent therein. The perfect-fluid flow in a conventional
(constant-area) shock tube is well lmown and is depicted in figure 1. At
time t = 0+, the diaphragm which originally sepsrated the high-pressure
or driver gas (state e) from the low-pressure gas (state oo)is instan-
taneously destroyed and the resultant pressure inequality is adjusted by
the mechanism of: (1) a centered expansion wave or expansion fan (that

#

is, one which originates at a single point in distance snd time) progressing
into region 6 ad isentropically accelerating the fluid to state ~
following the wave; snd (2) a shock wave progressing into region m and

u

accelerating the fluid to state u behind it. (See fig. l(c).) The
regions ~ and a, composed of the fluid originally in regions e and m,
respectively, me sep=ated theoretically by a contact surface (entropy
discontinuity) across which pressure snd velocity are constant and the
temperature and density are generally different. Hypersonic simulation
testing is usually done in region a where the stagnation temperature is
highest. The pressure ratios across the expsnsion fan and shock wave S,re
dependent only on the fluid in states e and m. Detailed discussion on
the theoretical performance of the conventional shock tube, as well as
modifications such as increasing the area of the high-pressure chamber to
increase the shock strength or adding a nozzle to obtain hypersonic flow,
may be found in references 1 to 6.

However, experiments have shown that, instead of regions u md ~
being regions of constant pressure and velocity as predicted by inviscid
theory and as desired for testing, the outer inviscid flow in these regions
is time dependent; and furthermore, it is found that the shock wave attenu-

y

ates as it progresses down the tube. (See refs. 2 and 6 to 10.) These
variations are attributable both to imperfect-gas effects and to boundary- b-
layer effects. Several investigationshave been undertaken to predict the
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ms+@tude of the wall shear and heat trsnsfer. In addition, attenuation
theories based on these wall effects have been advanced in references 6,
7, 9, andll.

The lsminar boundary-layer problems in region a behtid the shock
have been treated in references 6, I-2,13, and 14. Reference 6 first pre-
sented the solution to this flow by solving the boundary-layer problem}
in a coordinate system ftied to the moving shock wave, of a semi-infinite
treadmill (that is, the Blasius problem with nonzero wall velocity).
Solutions were obtained for the complete Frandtl boundsry-layer equations
on u analog computer and for the integrated momentum equation alone by
stiple computations (which, unfortunately, contained a numerical error).
In references 1.2and 13 the equations of reference 6 were solved to a
higher degree of accuracy on a digital computer and, in addition, velocity
and temperature profiles were determined. The momentwn equation was also
solved in closed form by an integral method by using a fourth-order series
for the velocity profile. Another integral solution obtained by using
the Rayleigh velocity profile for the momentum eqyation and then applying
Crocco’s relation between temperature and shear was used in reference 14.
The wall shear and heat-transfer results of these references agree very
well.

The situation in regard to the lsminar boundary layer for the flow
inside the expansion fan and in region ~ has not been as favorable.
Frior to the concurrent studies of the present report and the companiona
paper (ref. 15), the flow in these regions was handled by rather rough
approximations. In reference 7, the expansion wave was assumed to be

e shrunk to zero thickness and region ~ was allowed to exist from the
leading edge of the wave to the contact discontinuity. The unsteady
boundary layer was then assumed to be equsl to that of a steady flow
which had the ssme free-stream values of velocity, density, snd viscosity,
and which had traveled for the same time adjacent to a solid boundhg sur-
face. References U. and 13 also followed the procedure of shrinking the
fan to zero width but computed the boundary layer from the modified Blasius
(nonzero-wall-velocity)solutions. Both solutions result in conditions
physically unacceptable nesr the leading edge of the fsm since they pre-
dict infinite wall shear and heat transfer at points where the velocity
and temperature potential approaches zero. It is also evident that serious
errors are introduced away from the leading edge for expsnsion-fsn pressure
ratios not nesr unity because sn appreciable region of vszying pressure smd
velocity has been replaced by a region of constant properties. Thus a cor-
rect solution to the boundary-layer problem outside of region u is missing.
The f?illingof this gap and the determination of the boundary layer
throughout the shock tube by a common method was the primary purpose of
the present report. Corner effects arising at the juncture of two walls

7 or effects of opposite walls of the shock tube sre neglected, and the
boundary layer is treated as a two-dimensional unsteady flow over sn

. infinite flat surface. The unqualified term “shock tube” will be used



4

in the remainder of this report to designate
effects are considered to be negligible.

NACATN 3944

a shock tube in which these n
—

The theoretical investigationreported,krein was conducted at the
Langley gas dynamics laboratory. The time-dependent boundary-layer char-
acteristic system developed in this paper for conical potential flows
(appropriate to shock tubes and nuclear shocks) is a special case of a
general characteristic system applicable -tothe study of any time-
dependent lsminar boundary-layer flow.

An

a

%

b

%

c

c-f

Ch

SYMBOLS

coefficients in dtiensionless velocity-profile power
series

speed of sound

coefficients in dimensionless local enthalpy-profile
power serieO

ratio of thicknesses of velocity boundary layer snd
local enthal.pyboundary layer in transformed

coefficients in dimensio@ess total enthalpy-profile
power series

constant of proportionality relating absolute viscosity

1’2T1 +S()~T1 Tw
to temperature, — —=

VIT~ TW+S

ratio of thicknesses of velocity boundary layer and
total enthslpy boundsry layer in transformed

pls.ne, ~

local

local

i-l

skin-friction

heat-trsnsfer

TV
coefficient,

; pwula

qw
coefficient.

—

—

—

s

.
1

g
pwulhl*
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coefficient of specific heat at constsnt pressure

coefficient of specific heat at constant volume

aapsrticle time derivative, — + u — + v $
at ax

functions of ~,~ defined in equations

\ functions of boundsry-layer shape

H total

R?@ total

h local

h++ local

~2
enthalpy, h + ~

enthalpy difference, H - ~

I

T
enthal.py, cp(T) dT

o

enthalpy difference, h - hw

i, J states on opposite sides of free-stresm

k thermal conductivity

L distsnce normal to wall, L >> 8
5

(E9)

discontinuity

z distance free-stream particle has traversed since
acceleration from zero velocity by moving wave

●
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n

o

P

$2
Q=—

vet

R

r

s

s

T

t

u

U*= U.V*

Mach number

Pcp
Prandtl number, —

k

integer denoting exponent in profile
point in solution-

arbitrsry location of

local pressure

characteristic

heat-trsnsfer rate normal to free-stresm direction,

aT
-k —

&

.

—
n

power series or

boundsxy condition

!l~
local heat-trsnsfer psmmeter, —

2

r

VE
p~ae ~

—

m

Ulz
8

Reynolds number, —
VW —

rate of stresmwise growt@_of mixing region

recovery factor

Sutherland constsnt

state at shock wave

for viscosity-temperaturerelation

absolute temperature

the

velocity component along x-axis
,.

.
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c v

.

w

x

Y

~2
z =—

vet

a

*

P

r

7

velocity of free-stresm discontinuity in x-direction

velocity component along y-axis

state at wall or bounding surface

coordtiate parallel to surface bomding flow

coordinate normal to surface bounding flow

transformed normal coordinate for velocity profile,

transformed normal coordinate for local enthalpy

local enthalpy shape parsmeter, B2

%
ratio of specific heatsj —

Cv
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n. J’%+p~dy
o

.

●

vslue of y at edge of boundary layer, largest value
of bHj bh, or bu

value of y at edge Of totsl enthalpy boundary layer

value of y at edge of local enthalpy boundary layer

value of y at edge of velocity boundary layer

slopes of positive and negative characteristics in
~,t plane

derivative along positive snd negative character-

istics in plane, +

E general reference state; for shock-tube case denotes
undisturbed high-pressure region

! constant free-stream region behind expansion wave

—

m
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.

‘=&m&:):&
8

A velocity shape parameter -2A2

P absolute viscosity

v ktiematic viscosity, ~

9

k
x

conical parsmetery —
aet

‘te value of 6 at trailing edge of expansion wave

Ed value of ~ at entropy discontinuity

E~*,3~* values of g at limits of forwsrd integration along
characteristic lines for energy and momentum
equations

EZs values of E
●

at location of Z-shock

P density
s

a constant free-stresm region behind shock wave

T shesr

;E local

()austress, p —
ay

skin-friction
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x interval in numerical integration procedure, ~~+1 -

!! stream function

Q total enthalpy shape psmmeter, c~

u transformed normal coordinate for total enthalpy

profile, ~
I

‘J?-Q

o ~~

m quiescent state into which

1 local free-stream state

shock wave advsmces

Subscripts not specifically designated otherwise denote evaluation
at the appropriate state or location.

Superscripts or subscripts + or - denote waves moving h the
positive or negative x-direction.

A bsr under a symbol denotes nondimensionalizatlonby appropriate_

‘1quantity in reference state e; that is, U1 = ~, p = ~, and so forth.
E- P~

THEORY

DERIVATION OF GENERAL FO~ OF THE REDUCED HYPERBOLIC

DHTERENTIAL EQUATIONS

Discussion of Validity of Prandtl Botidary-Layer Equations

Since all the theoretical equations employed to deseribe the boundsry-
layer flow are based on the Prandtl boundary-layer assumptions, the valid-
ity of these assumptions must be considered further with regard to the
unsteady expansion-wave and shock-wave flowq to be treated in this paper.

.

The point of origin of the wave (x = t = O), representing, for exsmple,
the buxst of a shock-tube diaphragm, is a singular point and must be
excluded from the region of validity of the solution.

*
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The boundsry layer in the vicinity of the shock
sents a discontinuity in the outer flow, also may be
coordinate ssw!temfixed to the wave itse~ (that is,

IL

wave, since it repre-
considered frm a
the coordinate system

of refs. 6, i2, and 14). The problem is th&n equivalent to that of the
semi-infinite flat plate with a nonzero wall velocity in steady flow, the
leading edge of the plate analogous to the shock in unsteady flow being
a singularity. The Blasius-type solution for this problem is valid every-
where except very near this singularity. Thus, in the unsteady flow prob-
lem, the present solution, as well as those given in references 6 and 12,
is valid everywhere except very near the shock wave.

The ideal flow generated by centered expansion fans and shock waves
is conical in a distance-the sense; that is, it is a f~ction only of
the ratio x/t. Consequently, such flows are easily handled in a ~,t

x
coordinate system where ~ = —. The accompanying sketch shows the

~t

significant values of ~ for the shock-tube flow of figure l(c).

+’,
0/

%/

/

8 *
‘+?

oE

o x—

Three regions in the expsnsion fan must be tivestigated with regsrd
to the vslidity of the Prsndtl boundsry-layer assumptions. The area near
the leading edge of the expansion fan represents a region of low velocity
that increases.froma value of zero at the leading edge (~ = -l). This
situation appesrs snslogous to that in the region near a stagnation point
in steady flow; the Prsndtl boundary-layer equations are”thus assmed, as
has been found in steady flow, to give results that are valid near the
le- edge of the expsnsion fan. For an expansion fsm having a finite

. ratio of leading-edge pressure to trailing-edge pressure, across the trailing
edge of the expsmion fan there-is a discontinuity in the derivatives of
the theoretical inviscid flow. At this point the theoretical inviscid-flow.
derivatives chsnge discontinuously from a finite value ahead of the trailing

..
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edge to a zero value behind the trailing edge although the theoretical
i.nviscidflow itself is continuous. An &nalysis of the one-dimensional
time-dependent equations of motion at such a discontinuity shows that the
viscosity and thermal-conductivityterms are small compared with the
inertia snd energy terms; hence, laminar diffusion is negligible. Con-
sequently, it will be assumed that, although the Prandtl bouukry-layer
equations are invalid across such a disconttiuity where the second deriva-
tives are nonexistent or infinite, the equations are valid on each side of
the discontinuity. A matching procedure based on the conservation of momen-
tum and energy will then be used to bridge the trailing-edge discontinuity.

—

Reference 16 has shown in regsrd to slip flow that the discriminating
parsmeter, the square of the local Mach number divided by the local.Reynolds
number, is required to be of the order of unity or lower for the theory of
continuous viscous flow to be valid. In the region of the fan where ~

2
approaches — ~, pressure, density, and temperature approach values of

7-
zero (see appendix A), slip-flow conditions are encountered,,andthe
boundsry-layer assumptions are violated. The approximate values (based
on a perfect gas, 7 = 1.4 end ae = 1,1.17ft/see) of this pS.rameterfor

Pte
various ratios of trailing-edge pressure to leading-edge pressure —

P~

for values of pe of 1 atmosphere and 70 atmospheres are given in the

following table. .Alsoshown are the values of ~ and of the pressure
Y

ratio across the shock in an air-air shock tube corresponding to the
Pte

value of —.
Pc

()M12V1Pte ‘% te
Shock-pressure

y for values of pe of - ~ ratio

1 atmosphere 70 atmospheres

6.25 x 10-4 8.4 X 10-4 1.2X 10-6 2.9 20

7.5 x 10-6 1.5X 10-3 2.1X 10-5 3.9 30

$=0 3.4 x 10-1 4.9 x 10-3 4.7 40

=0 3.4 x lo~ 4.9x 103 5- 44

M12V1 >
An inspection of the table shows that, based on the criteria — s o(1)

U1

.

for slip flow, the slip-flow regtie occupies only a limited region for
extremely strong expsnsion waves.
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Outline of Derivation Procedures

Since the development of the characteristic differential eqmtions
governing the unsteady-flow boundary layer is rather lengthy, a brief
outline of the procedure followed will be presented before proceeding
with the detailed development. The principal steps sre as folIlows:

(1) The Prandtl boundsry-layer equations with velocity and both
local end stagnation enthalpy as dependent vsxiables are integrated in
the x,y,t system from y . 0 to y . co to obta~ ~tegral p~tial
differential equations. These partial differential equations are then
transformed to a conical coordinate system

(2) The wall enthalpy is assumed to be

(3) The velocity and enthalpy profiles
series in transformed normal ordinates a,,

Constsmt.

sre expressed as a power
B. and m. Arnn?onriateboundary,. -c-

onditions at the wall and free stresm sre applied to these series. The -

parameters ~, 4 md so forth are evaluated in terms of A, r, 0, b,
A V’

c, and arbitrary constants.

(4) Primary dependent variables Z, W, or Q are introduced end
the derivatives of 1, I’, G?, b, and c are evalu@ed. Substitution
of these quantities into the psrtial differential equations results in
pairs of C@aCteriStiC equations for Z and W or Z ad Q.

Derivation of Reduced Partial Differential Equations

The Prendtl boundsry-layer equations for the two-dimensional time-
dependent motion of a fluid over a flat plate are integrated over y in
the x,y,t system (coordinate system fixed to the surface of the plate).
The resulting psrtial differential equations obtained are then transformed
to a conical coordinate system ~,y,t. In this transformation-it is
assmned that all the outer inviscid-flow functions me functions only of

the conical psrsmeter ~ . ~. This assumption is valid for an analysis
aet

of flows initiated by centered expansion waves or shock waves moving into
quiescent fluid.

The qualification was also introduced h the determination of the
final form of the equations that the nondimensional velocity and enthalpy
profiles could be expressed as a Pohlhausen power series in a suitable
variable which would be chosen to account for the density variation through
the boundary layer.
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The following equations sre the resultant reduced partial differ- .

ential equations in the conical coordinate system. (See appendixes B
and C for details.) Because of their extreme length, they sre written b–
in abbreviated form here and may be found in their entirety in appendix C
(eqs. (Cll), (C14), (Cl>), and (c16)).

(1)

(3)

t aHw + ,+ ~ aHw+
—— . .

)

—— . . . +
H1* at HI* a~

(4)
.—

Equations (1) and (2) are the momentum and energy equations for Ul, hl,
.

6, and @ as dependent variables and equations (3) and (4) are for ul, k

Hl~ ‘, and ~. The terms
A~andz sre functions only of the parame-

Pter 1; — and ~ are functions of 1, u*

@@
I’,smd b; and — and ~ are

$ *
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functions of A, $2,and c. It should be noted

(similsx to Pohlhausen), I’ and Q sre defined

ad C2 for the enthalpy power series.

15

that, although A = -2A2
as equivalent to B2

Assumption of C!onstsntWall Enthalpy

The first step toward the simplification of this system of equations
is concerned with the partial derivatives of hw or Hw with respect

to g and t. If the solution is restricted to gas flows of short dura-
tion over solid boundaries having high values of conductivity and of heat
capacity per unit volume, it may be assmned that the wall temperature
depsrts only slightly from its initial vslue. (See ref. 13.) If this
slight deps.rtureis neglected and the wall.temperature is assumed to be
constant, all derivatives of the wall.enthslpy me zero smd are eliminated
from the equations. This elimination is employed to obtain a solution and,
furthermore, for all cases except those in which an insulated wall was con-
sidered, it will be assumed that hw . Hw = ~.

2
Note should be taken of the fact that, as ~ approaches — in

7-1
the fan, sll derivatives with respect to ~ of the outer flow also
approach zero; thus, there is the possibility in this case that the wdl

derivative of enthalpy would be significant. As ~ approaches ~
7-1’

however, the boundsry condition of zero fluid velocity at the wsll is
also violated as the slip-flow region is encountered and, since the equa-
tions and boundsry conditions themselves sre no longer valid in this
region, the lack of consideration of the wall enthal.pyderivative is not
considered to be significant.

Introduction of Power-Series Profiles for

Velocity snd Enthalpy

A transformation to a nondimensional “incompressible” ordinate normal
to the surface is netieintgjduced to eliminate the density terms arising

fi v and so forth. A power series inh the integrals for -,
A?V’?

this nondimensional ordinate is to be used to define the velocity snd
enthalpy profiles. Since boundary conditions applicable at infinity in
the physical plane are to be applied at a finite distsnce in the trans-
formed (incompressible) plane, the assumption is made that at a finite
distance 5 in the physical plane the boundary conditions at infinity
also apply. This distance 5 is the conventional boundsry-layer thick-
ness of either the velocity or enthalpy boundary layers. The nondimen-
sional ordinates for velocity, local enthalpy, and total enthalpy sre a,
~, and ~ which are defined by the following relations:
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(5)

(6)

(7)

In equations (5) to (7) the values of b are not necessarily equal
and, in fact, for the method of solution of this paper they are aid-owed m

to vsxy arbitrarily. An alternate procedure, often employed in stesdy
flow, requires the vsrious 8 values to be equal; such a procedure appears
to be unduly restricti= and, consequently, is rejected. Thus in the pres-
ent analysis, the ratio of the 5 vslues 1s one of the results of the
solution end not one of the boundary conditions enforced. Kalikhman
(ref. 17) was one of the first to adopt this procedure for 5U and bh.

The expansion series
assumed to be represented
as shown in the following

for the various nondimensional profiles are now
adequately by either a five- or six-term series
relations:

(8)

(9)
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H - Hw H*
=— = co + Clu+ c#? + C3U.?+ c4ul)4+ c5m5 (lo)

Hl - ~ HI*

The boundary conditions to be satisfied for the velocity profile are
as follows:

Five-term series:

For a= 0,

u—= o
U1

and for a = lJ

u—= 1
U1

dp &
U1

—= constant (zero except for one specisl case)
~2

For a= O,

[01a au ap Dul

&v& ‘X=-PIK .
w

(u)

(12)

(13)

(14)

(15)

(16)
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Six-term series:

For a = 0,

u—= o
U1

and for u = 1,

u—= 1
U1

da

(17)

.

b

(18)

(19) -,

—
(mj

dp$
—= Constant (and later dete~ned to be zero) (21)
&3

For u = 0,

(22)

Similsr boundary conditions are to be satisfied for the enthalpy
profiles with appropriate energy equations in place of equations (16)
snd (22). The reason for the assumption of a constant value (which may
be other than zero) for the highest derivative of velocity or enthalpy
at the outer edge of the boundary layer is discussed in the considera-
tion of the solution at the leading edge of-the expsnsion fsn.

The system of equations (11) to (15) or (17) to (21) may be solved
to yield all the A values in terms of A2 and the constant of equa-

tion (17) or (21). (See appendix D.) The term A2 may, in turn, be

expressed by an evaluation of equation (16) as follows:

4.

—

“
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But

(23)

(24)

Fw=l
(25)

%Pw

(for a given value of x,t from the assumption of the Chapmsn-Rubesin
viscosity-temperature relation (ref. 18). A combination of equations (23),
(24), and (25) results in

(26)

Evaluat@ the left-hand side of equation (26) by differentiating
equation (8) and evaluating the right-hand side by substituting the rela-

tion for ~ (eq. (c6)) and

P~
A=-21@=—

Pw

the definition of ~ yields

A similar procedure for evaluating the energy equations (eqs. (@l)
snd (B5)) at the wall yields:

N~hl 7-1M12
r =B2=-———

~2 hl* 2

(27)

(28)
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r -1
.

m

The integrals required by the definitions of El=

J(

~1
o U1

‘*=Lw(l-:): dy, and so forth are evaluated in appendix D

various relations for the shape parameters are expressed in the
form:

e Q(A)-=
AA

FJ*
– = *(N
A

:= @l,c)

g = d#
J

Transformation of Equations to Redu<ed Hyperbolic Form

6

(30)

New dependent variables, Z, W, and Q, are now introduced in
recognition of the fact that, in lsminar-diffusionproblems, the dif-

+

fusion distance (boundary-layerthickness) is proportional to the-~qusre
——

root of the product of the kinematic viscosity and the time since dif-
.

-

fusion began. These primary dependent vsriables me defined as follows:
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02
Z(g,t) = —

vet

21

(Zla)

@2W(g,t) =—
vet

(31b)

(31C)

Substitution of equations (31) into equtions (1) to (4) results in

(32)



22 NACATN 3944

.

.- E)1 5*+1%—— .—2Z +

Uf
-—

2

(34)

—

.
H1 -

U12

+
UIH1* u~2

Hl-—
2

+

(35)
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The psxtial derivatives of h, I’, b, fl,smd c may be eliminated
in the following manner: Equations (27), (28), and (29) may be expressed
in the functional form:

2
X(g,t)

()
= m(~) : z(~,t) (*a)

cz(~>t)

where the E terms are functions of ~ alone, whereas

and ~~ me functions of A only.

Since the derivatives sre to be expressed in terms

(36b)

(*C)

the terms Al

of the derivatives
of the primary dependent vsriablesy Z, W, and Q, another equation
relating these quantities is required for each pair. The relevant equ-
tions are the identities

,92 2

–u
~ b2

Ze A

~=z= $
(37a)

(r
—-
V=t v

(3P)
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Differentiation of equation (36a) immediately gives the values for
the partial derivatives of A:

.

(38a)

(38b)

and

gl . 1+215=1+2=: (39)
gdA d loge A
A

Differentiation of equations (36b), (xc), (37a), and (37b) aad
solution of the resultant two simultaneous equations employing the expres- - _

~md~
—

sions above for
at a~

give the following relations for the deriva- ._

tives of r sad b (or ~ and c).
●

The equations are written for 1?
and b but are also applicable for ~ and c by everywhere substituting
the equivalent functional form of the H-system for that of the h-system
(that is, Q fOr r, c for b, ❑* for V, Em for Eu, ga

‘or g2hJ Z for Z, Q for Wt and so forth).

.

(40a)
.
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.

.

.

●

.

.

(41b)

where

a loge$ a loge
g~ =1- +2 $

b loge b a 10ger

1 (42)
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.

~—

(43)

(44)

Rumination of the derivatives of the secondary dependent variables pro-
duces the final form of the differential equations.

For local errthal.py:

(45)

.
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For total enthalpy:

27

+

(47)

.

where

v a 10& ~a 10ge~ F

glh =1+2
a 10ger - a 10ge b
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.

a loge ~

[

a loge f! a loge )i1 # 2A
l+— v v

~a 10ge b ‘3h ~ 10ge r
+2

rb2 a 10%=A
(50)

Equations (45) and (46) and equations (47) snd (48) are sets of
hyperbolic differential equations for which real characteristics exist.
The slopes of the characteristic curves are given by the following
expressions:

A25L
e ()d 10ge $

Y1 g gl - 1+2 k
d loge A

for the h-method; snd

(51)

t

(52a)

(52b)

—.

for the H-method.

.
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The flow field in the ~,t plane is confined to the region

29

(o <t<@)

where the waves initiating the flow have.velocities ~- and us+.

Subsequently, it will be shown that the boundary conditions are specified
O~dOIlg ~=~s- and ~= ~s+; thu, integration along the character-
istic lines must originate at one or the other of these values of ~.
Furthermore, as the integration progresses, even though no boundsry con-
dition is specified at t = O or m, the must be increasing for the
mathematical solution to be compatible with the physical one in that an
event preceding another in time may influence the latter but not vice-
versa. Thus, the requirement

determines the limiting value of ~ at which (in the absence of dis-
continuities) the integration from ~ = ~s- or ~ = Es+ must stop. If.
this limiting vslue of ~ is denoted by 5*, ~ (from eqs. (51) end (52a)

0 or (72b)) changes sign at values of ~* given by

or

~+* = EQ* if -1
= ulp3&34=

(53)

(54a)

(54b)
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These values

term Z or ~
8~

the solution of a

also denote the vanishing of the coefficient of the ~

in the differential equations. Singular behavior Of
-.

differential equation at my point where the coeffi- .—

cient of the leading derivative in the differential equation vanishes
is a common mathematical phenomenon.

ME?ZHODOF SOLU210N FOR THE REDUCED

DIFFWWNTIAL EQUATIONS

Statement of Problem

—

HYPERBOLIC

The solution of the unstesdy boundary-layer equations has been
.

reduced to the problem outlined below. (The h-system alone will be dis-
cussed, since the H-system is in general.similu to it. Where major dif-
ferences between the two systems wise, these will be noted.)

If the following five equations sre given:

(1) First differential equation for Z (eq. (45))

(2) Second di-fferentialequation for W (eq. (46))

(4) T’= r(l,b,~) (eq. (36b))

.

. .

, .-

Z(g,t)
(5) —= fr,b,~) (eq. (37a))

W(g,t)

determine the five dependent variables Z, W, 1, I’,and b. The
solutions to this set of equations with appropriate boundsxy conditions
for the cases of constsnt free-stresm floti”sndof a free-stream flow
varying in a msmner prescribed by a centered expansion
in subsequent sections.

the
fsll
md
the

Method for Centered Expansion Fan

Solution of the problem at the leading edge.- The
critical values of A snd Z at the leading edge

wave are treated —

—

determination of
of the expansion .

(E = -1) may be achievedby consideration of-on~ two (eqs. (36a)
(45)) of the five equations listed previously. The elimination of
other equations arises from the fact that, at g = -1, the flow iS

.
..
.-
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.
essentially incompressible (Ml approaches O); thus, the momentum equa-
tion is divorced from the energy equation.

.
Consider first

of ~ by usimg the

the equation for X with E. expressed in terms

fact that Tw= Te and NW = pe:

37-1

[)

y+l
7-1

l=>
2

()

&2

l+g -1 e
l-~g

2

(55)

If the boundary condition is stipulated that h be finite at ~ = -1,
it is evident from equation (55) that the following relations must hold at

since 31+ g) = O

that is,

.

Z(-l,t) = o (56a)

(%)g=_JA(!f],=-l

and ~ denotes the characteristic derivative;
6E

($; ($)+(+)(3,
Now the momentw equation at E = -1 reduces to

(57)

(58)
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since.the ratio
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hl*
lim —= -(y-l)
g+-1 ~1%

Equation (58) may be reduced through further ltiiting and combining
processes to

I —1 \
\

.

(59)

“

(60)
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Equating the values of
()

6Z at
E= -1 from eqyations (76b) and (6o)

x-

yields

or

(61)

The initisl vslue of A at ~ . -I for au t must satisfy equation (61) .,
regardless of the values of I’ and b. ..1

If a five-term velocity profile is

values of Al snd ~ in termsof A

the equality

assumed, substitution of the 1

into equation (61) determines

For 1 to be real, the value of
(~~-=~~)~1 ‘ustbe SUchtha~

(63)
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()
112 !1

u

()

. 21.037$ - 14.02520
~

(63a)

11

()The minimum absolute value for & is found (by using the equal
U1

sign in eq. (63a)) to be -0.647. Aminhum value is desired since the
velocity should approach the stream velocity asymptotically at the edge

tl
of the boundary layer.

()
When this value of ~ is used with equa-

u~
a=l

tion (62), the stsrting value of A is found to be 12.3.

If this sequence is duplicated for the six-term velocity profile,
the corresponding equations ue: —

or

[:+aiiY’12-+w3”p0

.

.

—

(64)

.

.

(65)

(65a)

()
11I

The minimum value is ~ = O, and the corresponding value for A
U1 —

is 20.
ii

When the energy equation was considered, the following equalities
were employed at the leading edge:

(a) For the characteristic slopes (see eqs. (51) and (52a)):
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(b) For the characteristic derivatives:

(c) For the Z-derivatives:

(66)

(67a)

(67%)

()since ~ is zero.
at ~=-1

Sbce

w=

(eq. (37a)) and Z = O, it is necesssry for W = O to keep b finite.
The assmption of a finite b is a physically plausible restriction
since it implies a finite ratio of the thermal thichess to the velocity
thickness h the physical plsne. The dominsnt terms in the energy equa-
tion at 5 = -1 are:
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/
(68)

Substitution of the values already known at E = -1 and employment of
L ‘Hospitalksrule yields

.

But

‘bee(.)+’(i)-a’ ‘=“) ‘d
and

(69) 9

(70)
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Furthermore, h the limit ~ + -1, equation (28) reduces to

2 ~2 b2

Combination of the preceding four equations gives

(71)

(72)

This equation is identical in formto equation (61),

since the relations between ~ and ~ me identical when r is
F E*

. replaced by A2.

●
Therefore, the initial solutions for the energy equation are identical

to those for the momentum eqpation when A2 is replaced by I’;that is,

For five-term series:

A= -2A2= X2.3

r= B2 = -6.1
1

(73)

For six-term series:

A=20 1 (74)

. r s -10

lhom equation (71) it is evident that the initial value of b is equal
. to the square root of the Prandtl number for all cases.
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A like treatment of the total enthalpy method would result in initial ●

valuesof O=r sndb=c. This result is expected because, at ~ = -1,
Ml = O; thus,

Solution inside the expansion wave.- It has been proven that Z, W,
~, T, md b are constant at ~ . -1 for all.vslues of t; that is,

() ()

az .Oad aw

x g.-l
o. A solution having these ssme properties

x g.-l =

of invariance with t at constsnt ~ will be employed for the flow away
from the leading edge. Justification for this assumption is based on the
similarity found in the complete Prsndtl boundary-layer equations derived
in a~endix E. (See also ref. 15.) In the following paragraphs, it wild.
be shown that, since the outer inviscid flow is a function only of ~,
then the boundary-layer profile form factors A, I’,and b, as well as
the primary dependent variables, Z and W, are functions only of the
conical parameter ~.

.

First, consider any unsteady two-dimensional compressible flow over
a flat surface such that the outer potential flow is conical in the sense *

that it is a function only

dimensionless parsmeter T

of the conical coordinate =E

boundary-layer equations are transformed from the x,y,t
g,q,t system, the following results are obta@ed. (This

x
If aq“

and the Prandtl

system to the
transformation is

.

.

carried out in appendix E.) Both the boundary-layer differential equa-
tions (eqs. (En) and (E12)) ad the boundsry conditions (eq. (E13))
become explicitly independent of the the t provided that the wall
temperature is a function of ~ only. Consequently, the solutions to
the differential equations must also be independent of t in the ~,~,t
system; the parameters ~ and ~ are similarity parameters; and the
solutions may be classed as similar. The velocity and static enthalpy
profiles are then functions of only ~ and ~:

.

(75)

.

.
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●

.

A combination of these two equ@ions shows
to be also of the ssme type; that is,

39

(76)
k

the stagnation enthalpy profile

~2
h+~

H(~,q,t) = —=m

% %%
(77)

Consider the velocity profile of the integral method (eq. 8) which may
be written in the functional form:

n

Wd= I MN Cf+ (78)
U1(E) n ~

=

The a variable is eliminated from equation (78) by expressing a as
a function of ~ smd A. (The required e~ression is sn immediate con-

●

sequence of the definitions of a and q.) Equation (78) then reduces
to

*

Equation (36a) is of the functional form:

~= %(E)

Substitution of equation (79) into the
yields

(7&)r

(79)

velocity-profile equation (78a)

(80)
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According to equation (ti), the velocity profiles of the integral
method are functions of ~, q, snd A, whereas equation (75} shows the
exact profile to be a function of only ~, and ~. Consequently, in
order to make the integral-method differential equations compatible with
the exact differential equations, the boundary-layer profiles applicable
to both sets of equations must exhibit the ssme similarity in respect
to ~ and q. Thus, it is necessary that

~ = ~(~,v)

Finally, since A is the velocity form factor at an arbitrary value
ofxandt(or~ and t)sndis
essary that A + X(q). Consequently,

snd

independent of y, it is then nec-
the following

x(g)A(g,q) =

!fX)l’l$)=’o(g)b)l z ‘8’)

conclusion is reached: —

72 —

Since all the terms of equation (&l.)except the last one are known to
be functions of ~ alone, it follows that the last term must also be a
function of g only; that is,

~’
—=Z= z(g)
Vet

1

()& =0
& ~

. .

.

(82)

J

In an analogous manner it may be shown that W = w(~), r=r(~),
and b= b(~) for the integral-methoddifferential equation to exhibit

*

. .

.

.
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.

.

.

the same type

Consequently,

lsrly, it may

of shilarity as the complete differential equation.

the solution employing
(%), ( )

. aw
ZE=

justified for the conical expsnsion-fan flow region.

be shown that the stagnation enthalpy variables Q, !.2,

=

simi-

snd c sre functions only of the conical coordinate g.

Whether to employ five- or six-term power-series profiles and whether
to use static or stagnation enthalpy methods was next determined. The
reasoning lesding to the conclusion to use the six-term profiles with
the static enthalpy as a variable was as follows: Use of a five-term

profile necessitates the specification of

(:):. ‘d (=.;=. as

negative at the edge of the boundsry layer in order to satisfy the tiitial
conditions. Any Profiles res~tti therefrom, regadless of the vsriation
of the outer flow, must be limited unduly by the restriction:

lint~< 1.0
CAL ‘1

Consequently, the five-term profiles were eliminated for use inside the
expsnsion wave. Numerical integration of any differential equation is
difficult when the titegrand becomes improper. W the integral methmi,
nondimensionalization was accomplished through division by Ul, hi*,

or HI*. Consequently, when these quantities become zero, the integraud
becomes improper. In the expsnsion fsn, these singular points occur at
the following locations:

. .

.

.

At~=-1

l.q=o
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At ~=-1

HI* . ()

The singularities at ~ = -1 may be easily handled analytically.
(See previous section.) However, the singuhrity in H1* at E = 1
wotid occur in the middle of a numerical or graphical procedure and would
present a possible source of difficulty. For this reason, the static
enthalpy system was chosen for the solution in spite of the fact that the
stagnation enthalpy method has been more generally used in steady flow.

Although a graphical-isocline technique could have been employed,
the following numerical method appesred to be more advsxrtageousin regard

to both time and accuracy. First, two additional variables ~and~
5E 8(

were introduced ad the required two auxiliary equations were obtained
by assuming a Taylor expansion for Z or W in the neighborhood of the
point ~n; that is,

*2 X3 X4 iv*&#+. . .
%1=%*%’+ -@” * ~%’” + ;%l (83)

120

where the plus and minus signs indicate values ahead of or behind the
nth petit, X is the interval between adjacent points, and the super-
scripts on the Z terms express total derivatims tith respect to ~.

Differentiating equation (83) with respect to ~ yields

Multiplication of equation (84) (positive signs) by ~ and subtracting

the result from equation (83) (positive signs) give an equation applicable
to the stsrting problem (that is, when the values are known only at one
previous point):

.

.

—

.

.

—

.

.

.
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ZI!L+l
*2

=;(%+l- %1)- %’+ ~%’’’+””” (85)

Subtraction of equation (83) (alternating signs) from equation (83)
(positive signs) md addition of equation (84) (positive signs) to equa-
tion (84) (alternating signs) yield

(86)

%+1+ %-l = q’ + x%’” + + x&iv + . . . (87)

The term ~:’i may be elhinated from equations (%“) and (~) to yield

( )(%+1 = ; %+1 - %-1
)

- 4zn’+ q-1 +*x~q~+. . . (88)

which is applicable when the vsll.uesare known at two previous points.

Equation (88) is a form of Milne’s equation (ref. 19) but has been
derived in a different manner to show its natural compatibility with and
extension to equation (85). Equation (85) (and its W counterpart), the
third derivative beimg neglected, was employed to evaluate the first point
away from the leading edge of the fan and thereafter equation (88), the
fifth derivative being neglected, was used.

The
solution

(1)

(2)

best sequence of computation&1 steps found for obtatiing the
at the n + 1 point from the nth point was determined to be:

Esttite An+l = An + XAn’; An’ obtained from equation (3&)

Solve equation (27) for %+1
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(3)

(4)

(5)

(6)

(7)

(8)

Solve equation (85) or (88) for %+1 =

Solve equation (45) for bn+l by trial

()~value of obtained equals
6(

n-l-l

Compute Wn+l from equation (37a)

()6ZG
ni-1

and error until the

Solve equation corresponding to equation

()W;+l = :

n+l

Solve equation

Compare values

()(46) for W:+I= ~

n+l

()of = from steps 6
Bk n+l

that obtained in step 3

(85) or (88) for

and 7 and repeat pro-

()8Wcedure with new value of &+l until the two values of
.

Z n+l

are in sgreement. .

Values of the interval X were selected as follows:

x= 0.02 (-1: g s -0.go)

x= 0.04 (-0.88s g s -0.83)

x= 0.10 (-0.70: !%$ 1.00)

The smaller values of X were used near k = -1 because of the
strong curvature of the functions A, b, and r when plotted against ~.
These functions all had infinite slopes at ~ = -1

(
it may be shown

~ a (1 + ~) ‘1/2 in the region wherethat m ~ approaches
)

-1.0 whereas Z

and W had finite slopes with small second derivatives.

.

A.
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Methods for Regions of Constant

Outer Inviscid Flow

Simplification of the reduced hyperbolic differential equations for
special case of constant outer flow.- The general reduced hyperbolic dif-
ferential equations of motion and energy in the conical ~,t coordinate
system are great~ simplified for regions of constant free-stresm velocity,
pressure, density, viscosity, and so forth.

Equations (~a), (~b), (37a), (45), and (k6) represent the final
form of the most general set of equations in ~,t coordinates in terms
of local enthalpy; corresponding stagnation enthslpy equations sre (36a),
(%c), (37b), (47), ud (48). For the special case of constant outer
flow these equations may be written h the following form:

For local enthalpy:

A=o

%rhl 7-1
r=-——— Ml*Al*

b2 hl* 2

L)-
fj2

z z-= b2

()

w 62

?

.

(894

(@b)

(90)

(9Q

(92)
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For stagnation enthalpy:

(q
=

all
the

NACATN 3944

.

(93a) -

(93b) .—

(94)

(96)

.

The following additional relations stem from the requirement that
free-stream quantities are constant snd have been incorporated in
precedm equations:

gl=l

1

()

‘hh
‘5h 2 ~

=1-1-

()

11 ‘4H
g5H=~ ‘~

g&= g@= o

(97) .

.
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.

.

.
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The momentum
are identical snd
equations for the

differential eqwtions
are independent of the
case of constant outer

for this case, the equations in terms of
will be csxried simultaneously.

47

(91) and (95) in both systems
corresponding energy differentiaJ-
flow. In subsequent derivations
local and stagnation enthalpy

The slopes of the characteristic curves are:

For equations (91) .md (95):

For ecyxation(92):

For equation (96):

If the characteristic
differential equation

Since A, ~,

all constant,

line of slope

(98)

(99)

(loo)

derivative notation of equation (57) is used, the
(91) or (95) may be rewritten to yield

+
z = (101)

and ~5* as well as the free-stream flow quantities are

this equation may be integrated in closed form along a

()

bt After the general boundsry condition that Z = ~
m-”
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at g = go is applied, the result is

As yet, no restrictions have been made regarding the dependence of Z
upon t. Thus, in theory, Z. may be a function of t, and the energy

equations may be developed accordingly. However, since the constant-
outer-flow case is only a specisl case of the general conical-flow case
discussed previously, the ssme arguments may be applied to show that Z,
V, Q, A, l?, ~, b, and c are functions only of ~. This restriction
immediately limits Zcj, WO, and ~ to constant values. .

It should be noted that, although the time dependency haa been elimi-
nated in direct form from the equations of motion and energy, it is still
present implicitly in Z, W, ~d Q. These equations still possess char-
acteristics and integrationmust proceed along the characteristic lines
given by equations (98) to (100).

In line with these arguments, equation (102) is differentiated
directly; this differentiation yields

(103)

After equations (@b), (90), (102), and (103) are substituted into equa-
tion (92) and the terms are transposed, the following differential eqya-
tion for local enthalpy results:

(lw)

.

. .-—

.

.
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Similar manipulations lead to the equation in terms of stagnation enthslpy
from equation (96):

Equations (104) snd (105) represent the alternate forms of the energy
equations and, in general, must be solved by either a graphical-isocltie
or a numerical step-by-step procedure in conjunction with equations (102)
and either (@b) snd (90) or (93b) and (94).

Andy-t ic solution for flows generated by waves of zero thickness.-
The bound- layer behind zero-thickness waves sdvsncing into a fluid at
rest permit: th~ introduction of the relations ~ = W. = ~ = O at the

wave location (Eo = Es) in the preceding set of equations. The familiar

shock wave of the shock-tube flow is such a wave. Another is the mathe-
matical model of a “negative shock” which is defined as an isentropic
expansion wave having finite pressure ratio and zero thickness, traveling
with the speed of sound of the undisturbed fluid, smd generating a flow
behind it otherwise identical to that generated by an expsnsion wave of
finite thickness snd identical isentropic pressure ratio. Hereafter in
this report, the unqualified use of the word “shock” or “shock wave” fi
reference to a potential-flow discontinuity will.designate a shock wave
satisfying the Rankine-Hugoniot equations. Solutions to the complete
Prandtl boundary-layer equations for the shock may be found in refer-
ences 6 and 12 ad for the negative shock in reference 13. In these
solutions the velocity and temperature profiles sre similar everywhere in
the region of flow (that is, the profiles chsmge shape only by a stretching
factor normal to the wall as time increases). The integral-solution coun-
terpart to such a similarity throughout the field of flow is representedby
the constancy of 1, l?, fl, b, snd c everywhere h the field.

The conditions ~ = W. = ~ = O at go= ~s transform equa-

tions (1.02),(104), snd (105) into the following equations:

2 ()
2

Vw Pw
.—
v~ p~ “

(106)
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If the conditions of constancy of A, T’, 0, b, and c me now
e

imposed, -, 5’ @ @ I ad a m~stbecons~ant. Itm.st then
A? V’7D’U

follow from equations (9o) and (94) ‘that

()g2 ~2
zA

()

‘= 62
= Constant

w

?

(109a)

.-

(109b)

.

since z is a line= function of ~, the terms W and Q must sJ-sobe
ltiear functions of ~, and their derivatives with respect to E me
constsnt. Equations (107) snd (1o8) tidicate, however, that the ,deriv-
atives of W smd Q are functions of ~ unless the second terms on
the right-hsnd side of the equations are identically zero. Equating
these terms to zero in order to satisfy the simil=ity relationship
produces

(ill)

.
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Equation (lIO) must be

(eqs. (D15) and(D16)), ~

to determine the values of
linear. (Similar relations
terms in the braces reduces

solved simultaneously with those for t
v

(eqs. (D9) and(DIO)), and r (eq. (@b))

1? snd b that would be required to mslce W
apply for eq..(lll.).) Eliminati-onof the
equations (107) and (1o8) to

(lU?)

(U3)

The terms W snd Q then may be evaluated either Wectly from equa-
tions (109a) ad (109b) or by application of the linear relation between
these parameters snd ~; that is,

w(g) = (); (5-ES)

+

Q(5) = (): (E-ES)
+

Solutions to these equations may be found for sny arbitrary specifi-
cation of free-stream sad wall conditions behind any free-stresm flow
discontinuity mom into a fluid at rest. The shock and negative shock
are special cases of this general case in that the free-stream cm-
ditions are specified by the conservation laws.
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Solutions for the Boundary-Layer Parameters Across

Discontinuities in the Force-Stresm Flow

Assumption of finite discontinuities to replace mixing regionso-
In the free-stresm flow generated by traveling shock or expansion waves
moving into quiescent fluid, there sxe two general types of discontinuities
which will be classified as either strong or weak. The strong discon-
tinuity arises from a Jump in sny of the flow quantities such as velocity,
temperature, density, or pressure. The shock itself and a contact surface
(entropy discontinuity) are of this type. The wesk type indicates a dis-
continuity in the first derivatives of a free-stresm flow variable. The
flows at the leading and trailing edge of sny finite expansion wave exhibit
this type of singularity in that the derivatives change discontinuously
from a nonzero value inside the wave to a zero value outside of it.

In the following paragraphs, equations giving approxkte “matching*’
solutions to the integrated conservation equations for the case of the
weak discontinuity at the trailing edge of the expansion fen end for the
case of the strong entropy discontinuity are presented. (The cases of
the shock or expansion-fsm leading edge are trivial.) It is to be noted
that a line (zero-thickness)discontinuity is employed in both cases.
Although the entropy discontinuity actually becomes a strong entropy
gradient either because of lsminsr diffusion, h which case the width
of the gradient zone grows parabolically with time (ref. 20), or because
of turbulent mixing, this growth is ignored for the sake of simplicity .

since any growth that is nonlinesr in time would eliminate the conical
symmetry of the problem. The behavior of the adjusting region for the
boundsry layer at the trailing edge probably also would be parabolic in

._

time, but this fact has not been proven to date. The solutions obtained
under these zero-thiclmess assumptions would be only approximate but

—

should give fairly good indications of the correct boundary-layer behavior
in regions not immediately adjacent to the discontinuities.

Matching equations for trailing edge of expaasion fan.- The equa-
tions representing the conservation of mass, momentum, and energy entering
end leaving the discontinuity over the range of y from zero to L(L>> 5)
exe derived in appendix F (eqs. (F8), (F9), and (F1O)). The states i
and j represent states on opposite sides of the discontinuity. Since
in this case there is only a discontinuity in the derivative, ui = Uj;

Pi = Pj; Pi= Pj; ~d ~ = hj; and the equations take the form:

()1
~++hl*

()

V* hl*
_Vi*-~i*= 1- __vJ* - Oj*

‘~hl U1 hl
(l14a) g



53

~x 2 hl*

()

1 -— _ vj*
U1 hl

These equations may be rearranged to giv-e

(l14c)

-— -—
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If i is the state inside the expansion fan, all the psmmeters
of state i may be assumed to be known from the solution obtaine by
integrating from ~ =

( !
.1 to that point & < GZ* beti assumed . The

velocity of the discontinuity must coincide with the trailing edge; that
is, v*= (u - a)i. In addition, stice at j all free-stream derivatives

.

are zero, A-J= o.

Consequently, the problem becomes one of satisfying the three simul-

taneous equations (115) of the form ~= f(b~,rj) and equation (28) in

the form rj = rj(bj). This system is equivalent to three equations of

ei
‘i = f(bj).the form -—
ej

Such a system with only the two unknowns — end
ej

b~ is redundant end solutions would not in general be expected to exist. —

In sm effort to satisfy the b~sic equations of mass, momentum, and
energy, snother unknown vsriable R was introduced. The assumption was
made that, instead of the line discontinuity, the regions i snd j
would be separated,by a mixing region of thickness eq~ to the product
of time and ~; ~ by definition is equal to the difference between the
lesding- and traillng-edge velocities of the mixing region. In this “-

—
—

manner, the conical.symmetry was retained and a finite mixing region was
..

permitted. In addition, storsge of mass, momentum, and energy as well
as heat-transfer and wall-shear effects was permitted inside this zone.
Evaluation of these influences was on the basis that the values in the

.

zone were assumed to be equal to the average of the values at the extrem-
ities of the zone. The three simultaneous equations in the form

~= f(~,b.j) were then solved. However, values of R so obtained

-J

located the mixing zone as extending from a point inside the expansion
fan back to the trailing edge. Such a solg~ion &not acceptable since
it was assumed that ~j = 0. This solution may be interpreted as an -

—

indication that the physical.bounda?y layer is influenced upstream of
the trailing edge, since the propagation velocity for the disturbances
is higher in the boundary layer than in the free stresm. (That is,

]-ae[> lu~ - all.) In other words, pressure pulses would travel faster

in the boundary layer; thus, It is logicall.toexpect some type of dis-
turbance inside the bou~ layer ~e~ of the Potenti~-flow traili% -
edge.

,

Finally, in order to obtain a usable approximation, the momentum
snd energy equations (l15b) and (l15c) were solved simultaneously whereas ._
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the continuity equation (l15a) was ignored except to provide a check on
the msgnitude of the error introduced. Such a procedure has been employed
successfully for the momentum and continuity equations since Von K&mdn’s
esrl.ywork on transition, in which it was assumed that at the transition
point the lsminsr and turbulent momentum thicknesses were equal, conti-
;;ity being disregarded entirely (ref. 21.). Comparison of the values of

—, obtained by simultaneous solution for bj ad ~ of equations (l15b)
e: eq

d d

and (1.15c)jwith that obtained from the conttiuity equation (using the
solution for bj) showed a maximum discrepancy under 2 percent. Thus,

the neglect of the continuity eqpation does not appear to be significant
in this case.

Matching equations for contact surface or entropy discontinuity.-
The case of a strong discontinuity bounded on both sides by constant
free-stream flow regions of the s&e fluid will be considered. The dis-
continuity propagates with a velocity V* = ui = uj aud, h addition,

Pi = Pj>- Ai=AJ=o. Ul@er these conditions, the matching equa-

tions (eqs. (F8), (Fg), sud (F1O)) reduce to

Of,- 5i*= ej - 5j*

~~#j
hj hJ*hJ ~*+1-~ej+ _~j*-_—

J
– A.13
2J

(D8)

hj U32 hj uj2
’32

Solution of the continuity and momentum equations (u6) and (JJ7)
immediately gives
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.

(1..lga)

Since Ai = AJ = O, the following relations must also hold:

&=($) ei=AJ
i

Ii = Ii(Xi) = Ij (l19b)

Substitution of these equalities into the energy equation and
rearrangement results in

~&)U($)J=~*~)~($(*){fi+)=’(~te)(.20)

This equation of functional.form f(b,I’)= Constant is reduced to
the form f(b) = Constant by use of equation (28). The resultant equa-
tion cannot-be solved
end error.

TRANSFORMATION

in clo~ed formb& may be e&sil.ysolved by trifi
,

.

TO AND EVALUATION OF PERTINENT PARAMETERS

IN THE PHYSICAL FLOW

Inversion From Transformed Coordinates to the

Corresponding Physical Flow Coordinates

The inverse transformation from the a, ~, or u normal coordinate
system to the physical normal coordinate y may be carried out when the
profile functions are lmown. This transformation is first illustrated
for the local enthal.pycase.

The definition of p (eq. (6)) is inverted to

(la)

.

.
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Substitution of the definition of h* and hl* enables equation (lXl)

to be written as

The expression for ~ may then be evaluated for sm.yknown distribution
v

of h*
— with ~. Equation (122) is suitable for transformation from @
hl*

to ~. Trmsfo-tion of the ~elocity profile is acc~lished by SUb-
V

Y
stituting the identity ba = ~. The expression – is, in turn, related

v

Y
to a nondimensional similsr normal ordinate —

r

as follows:
vEt

YG—= -— =.

& ; & ‘b:

(123)

Thus,

or

(124a)

(124b)
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Eqpations
local enthalpy

NACATN 3944

(12ka) and (U2kb) are the inversion equations for the .

transformation from the ~- and a-plane to the physical-
flow coordinate system.

Corresponding equations for
as follows. (The identity cu =

.

the totaL enthalpy transformations are ,
u is also employed.)

(125a)

.

.

Transformation of Velocity md Temperature

Profiles to the Physical Plane

Since the profile series result in distributions of ~ and ~lq 1

or C in terms of a, ~, or u, it is desirable to obtain profiles
HI*

nondhnensionalized by an invariant reference state in terms of y, E,
and t. In the previous section the inverse trauf ormation of a, @,
and u was shown to be of the form

.
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.

(u6)

a= ( )’Y
(z g., —

rvet

() ‘P=EUA--rvet

u=

( c),

Ya g,—
Vet

The combinations of equations (126) with equtions (8), (9), ad (10)
produces the following equations for the profiles in the physical plane:

()

$y,~,t)=$~)$k,~ =~~)-$(~,a)

r

(127a)
vet

hl* hl*
#Y, E,t)

(r)

sl+-@E&- hl* = 1 + -@ !&p) (127b)
E E vet

If ~ is computed by the local enthalpy method, the
%

equation with values substituted from equations (127a) =d
thsn equation (127c) would apply:

(lqc)

fouowing

(127b) rather
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Evaluation of Wall-Shear snd Heat-Transfer Coefficients :

The expressions for the wall shear and heat traasfer in basic form
and in various coefficient forms are derived. In this section the designs- -
tion a after an equation number denotes the 10CS2.enthalpy method end
b, the stagnation e~thalpy method.

—.

time

in a

Consider first the wall shem:

A dimensionless shesr function ?e

dependency in equations (129) with

Tw Pw?E= =—-

dpeaG ~

The rate of heat transfer from
like manner:

Pe

the

(J-29)

)

is introduced to eliminate the

the result that ?e = ?C(E) and

(m)

wall to the fluid may be treated

(131a)

.

●

.



NACATN 3944 61

(131b)

(132b)

Analogy ratios for ~ and ~e may be simply formed and are

~= 1 %* ~ %-—— .
A

‘Pr ‘lae ‘1‘e

$4 1 %* %—= -——
GE N= ulae c~

An alternate coefficient form which, although
comparable with results of others, is dependent on

(133a)

‘(133b)

it is more easily
both E, t, and a

flow length 2 may be expressed & terms of a Reynolds n~ber- based on
flow length. The following definitions are used:

z length potential flow has traversed since acceleration
frcm zero velocity by wave 1
Ulz

R=—
Vw 1(134)
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Equations (134) sre combined with equations (3.29)and (131) to
determine

(135)

(136a)

.

.-

.

The resultsnt snalogy ratios are

Ch bBl
—= -—

2A1
(137a)

Cf .

Ch CC1 H1*
—= -——
Cf 2A1 h~* (13P)

These relations (eqs. (135) to (137)) are appropriate for the
constant free-stream flow behind a zero-thicknesswave, since for this
condition 1 is given by

(138)
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RESULTS AND DISCUSSION

SHOCK SOLUIKtONS

Equations (1o6) to (113) for the local and stagnation enthal.py
methods were solved for the flow behtid.a shock wave advancing into
undisturbed fluid (region m). Solutions were determined for the fol-
lowing conditions:

(a) Five- andsix-term series represented profiles of velocity and
enthalpy

(b) The highest order derivative was assumed to be zero at u = 1
and~=l

(c) Prsndtl numbers of 0.72 and 1.0

(d) Wall temperature e@al to the undisturbed fluid temperature
snd wall temperature equal to the recovery temperature.

Figures 2 to 4 present the results in coefficient form snd show com-
parable results for the solution of reference 12. The potential flow is
designated by the subscript u snd represents the shock-tube region.
appropriate to this case.

s The coefficients are independent of the ratio of the specific heats
7 when plotted against a function of the ratio us/us. The choice of

%3 us
rather than — as the abscissa was made in order to represent

%-% %7
the entire range of shock strengths along a finite abscissa.

.

These solutions necessitated finding the vslues of b which satisfied
the equations for the local enthalpy case (eqs. (11.0)and (D15) or (D16)) or
the values of c which satisfied equations (Ill.),and the equations for
~/D (analogous to eqs. (D15) or (D16)) when the stagnation enthalpy
equations were used. These equations sre polynomials of high order in b
and c and, as a consequence, multiple roots were possible. only two
roots with real positive values of b or c were found for each case.
One fsmily of equations originated at the value b,c = O for the
limiting weak wave and the values were much less than unity throughout
the entire range; the other fsmily originated at the value b,c = N=

r
for the lhiting week wave sad remained of order one for all waves. The
latter fsmily was chosen as the correct one after application of the
argument that, on physical grounds, an infinite ratio of velocity to
thermal-boundsry-layer thiclmess is not acceptable.
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Because the momentum equation is independent of the energy equation .

when the outer inviscid flow is constant, skin friction is independent
of NW ~d is the ssme for both local and stagnation enthalpy repre-

The terms cffi for the five-

.
sensations.

—
and six-term profile series

(fig. (2)) agree well.with the corresponding values of reference 12, the -
five-term solution being 3 to 4 percent lower end the six-tezm solution
being only from 1 to 3 percent lower than the reference values. The coef-
ficients are significsntl..ydifferent from”the steady-flow values of

—

cf@ and Ch@; the unsteady-flow values are about two to three times

as large. This difference arises because shock-initiated lsminar boundery-
layer flows ere more closely related to the Rayleigh problem of the infinite
plate set in motion impulsively then to the steedy flow over semi-infinite
plates. The flow behind the shock is equivalent to the Rayleigh flow for
the limiting wesk shock with a pressure ratio of 1.0 (ref. 12).

Heat-transfer parameters for the special case Tw= T. defined by
equations (134) are plotted in f&ure 3; results of the present solutions
are compued with results of the analysis of refe&nce 12. As in the case
of skin friction, heat-transfer coefficients agree well throughout the
range of shock strengths.

The recovery factor r is defined as

r=%w-hl=Haw-hl

H1-hl H1-hl
(139)

——

where haw = E&w is the enthalpy of an insulated wall (qw = O). The
.$ —

condition of zero heat transfer occurs when
()

&i = O which, in turn,
by w

requires that B1 or Cl = O. These latter wi13.be zero when

r,o = 6

1

(140)

r,~ = 10

for the five-term series and six-term series, respectively. Although in
figure 4 the discrepancy between the recovery factors of the local enthalpy
methods and those of reference L2 appears to be large, the recovery-
temperature error itself is fairly small because the Mach nunber is
limited to amaxhnum of 1.89. The following numerical example for air

.
—
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“

.

“

(as aperfect gas) with T~= 520° illustrates the fact. At a shock-

pressure ratio of 3.0, the adiabatic wall temperature from reference I-2
is 1,443° compared with the six-term local enthalpy result of l,411°;
and at a shock pressure ratio of 100, the temperature from reference 12
is 14,737° and that of the present analysis is 14,804°.

Insulated-wall solutions by the stagnation enthslpy method required
recovery factors of unity for both five- and six-term profiles regardless
of Prsndtl number. Failure of this method is attributed to the low num-
ber of terms in the profile function. In the local enthal.pymethod for
five- and sti-term profiles, stagnation enthalpy profiles contain 9 ad
D terms, respectively, because of their quadzatic dependence upon veloc-
ity. Thus the stagnation enthalpy profiles may have a sufficient number
of inflection points to yield zero heat transfer at a wall temperature
other than that equal to the stresm stagnation temperature. When five-
and six-term stagnation enthalpy profiles are required, however, too few
points of inflection are available to satisfy the boundary conditions and
to give zero heat transfer at any wall temperature other than stresm stag-

nation temperature. The result is the unique profile ~0) = 1, 8H= O,
H1

and c=m; these values appear to be unacceptable for Prandtl numbers
other than unity.

Figure 5 presents velocity profiles of the five- and six-term local
enthalpy solutions for the present analysis computed at the location

us
k = ~ for a value of the parameter — equal to 2.0. kCal- snd

aE us-~

stagnation enthalpy profiles for the same case sre given in figure 6.
Shown also in these figures are the corresponding profiles evaluated
from reference 1.2. The integral-method profiles are slightly fuller in
the outer psrt of the boundary layer but are in close agreement nesr the
wall, the six-term proffles giving slightly better correlation than the
five-term profiles.

Solutions by the local enthal.pymethod with six-term profiles smd
vanishing stresm derivatives were obtained for the flow behind a negative
shock propagating into region e. Skin-friction and heat-transfer results,
Cf@ and ch~j me plotted in figures 7 and 8 against ~te which is

sn index of negative shock strength. The functions me evaluated for 7
eaual to 1.4 and 1.667 smd Prandtl numbers of 0.72 and 1.0. AS for the
c&e of the shock wave) O~Y the f~ly of solutions with
was considered.

Results of the analysis of reference 13 for 7= 1.4
number of 0.72 are also shown in figures 7 and 8(a). Good
the corresponding case of the present solution is evident.

b near unity

and Prsndtl
sgreement with
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EXPANSION-FAN SOLUTION
.

The initial solutions to the hyperbolic differential eqwtions
.

for Z end W indicated immediately that there was no unique mathematical “- –
solution to the problem; instead, en infinite number of solutions were
possible for the six-term profiles. The reason for this behavior lay in
the fact that the stating value of A = ~ (r= -10) not only produced

—.

()the fullest profile without exceeding a value of 1.0 for — —U h* bti
U1 hl*nc

()was also the maximum point on the curves of A ~ snd A1~&

against A. In the range where ~ approaches -1, the dominant terms
(as has been shown previously for ~ = -1 in the discussion of the
stsrting problem) in equations (45) and (46) contain these parameters;
thus, it is possible to find solutions on either side of X = 20. Simi-
larly, for each A in this region, branch solutions exist for r on
either side of -10 corresponding to a b on each side of Nnl/2.

#
Furthermore, it was ossible to change from one family ~say h < 20,

r > -10, 1’b > N&/2 to another (A <20, r < -10, b < N~l/2) in Suc-

ceeding steps, and the derivatives obtained for ~ S,nd ~ would permit
d~ d~ ——

fairing of a smooth, although inflected, curve of r and b against lj. .

Thus, from a single solution at the start (point for n = 1) the possible
solutions multiplied so that at the first step away from ~ = -1 (that
is, n= 2) there were foux solutions; at the second step, eight solutions; ‘
or at the nth step, =. possible solutions.

—

The aforementionedmathematical phenomenon was eliminated on the
basis of physical logic that such oscillating solutions were not com-
patible (at least in the region where ~ approaches 71) with smooth
monotonic variation in all the potential-flow quantities. However,
there stilL remained the first four brenches of the solution:

Branch 1:

A<20; b>
<
N=; r > -lo

Branch II:

.

“
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Branch 111:

67

.

A> 20;

Brsnch IV:

b>
v
N=; r > -lo

These four branches were
are presented in figures 9 to
the results of a power-series

Pb< ~; r < -10

computed and the results of their solutions
15 ● Also plotted in figures 14 snd 15 sre
solution to the complete Frandtl equations

(ref. 15). This solution, obtained by expsnding ~he “velocitystream func-
tion ad a corresponding temperature-distributionfunction in terms of
powers of ~ + 1, contains terms up to (~ + 1)2, is exact at ~ = -1,
and has a progressive error as ~ increases. Note should be taken that
the series solution was not completed until sfter the integral solution
in the expansion fan waa finished; thus, a comparison with the series
solution was not available in the early stages of computation.

An inspection of figures 9 to 15 reveals that, in the neighborhood
Ofk= -1, the Z, W, ?G, snd & curves of the integral solution

ue nesrly coincidental in spite of the variation in the profile param-
eters A, r, and b. The values of ?6 and & also agree closely

with the solution of reference 15 in this region. This near-equivalence
of wall shear and heat transfer, concurrent with different values of A,
I’,and b, is typical of integral solutions which are not concerned
directly with the various profile shapes inside the boundsry layer but
instead me dependent on the integral of these profiles and their deriva-
tive at the wall.

As ~ becomes larger, branches II and IV first diverge from
branches I and III; and the solutions to the former branches become
unacceptable when b becomes zero at E = -0.52 since this condition

ah
indicates an infinite ratio of — in the physical p~e. Brenches I

%
and 1~1 sgree with the series solution within 2 perc~nt up to ~ = -0.5
for TE and within 5 percent up to ~ = -0.7 for ~.

Branch I solution does not continue past ~ = 0.62. At this point
~ = ~z*, and further integration along the characteristic originating

from ~ = -1 is prohibited. Branch III solution was halted arbitrarily
at ~ - 1.0, the point at which Z approaches O. For this solution
~z*> 1.0 so that further integration was possible but was discontinued
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in view of difficulties (to be discussed in a future section) encountered .

in joining the solutions to a constant-pressureregion.

Velocity and enthalpy profiles of the four branch solutions and the
.

power-series solution are shown in figures 16 and 17 for values of .

3 = -0.9, -0.7, and -0.5 (no solution for branches II sndIV at ~ = -0.7).
All solutions agree very well in regard to velocity profile (the over- -..

shoot in velocity in branch III at these values of lj is almost negli-
gible) snd the agreement at ~ approaching -1 between the integral snd
the exact (that is, the power series as & approaches -1) is much better
than that for the shock solutions. (Compare figs. 5 and 16.) Although
the enthalpy profiles of branches I snd 111 agree closely with each other
and the series solution, those of branches-~l and IV indicate a different
and very improbable behavior from the beginning. .The profL1es ‘Orb*/hi*)

branches II and IV show minimum values of h (maximum values of

to exist inside the boundary layer, end such a minimum does not appesr to
be physically logical since the convective derivative of free-stresm tem-
perature is always negative whereas the wall remains at a fixed temperature.

Of the two remaintig branches, I and~I, arguments could be advanced
originally for the retention of both. For.the case of 1< 20 (branch I)

DPl
consider the argument: Since the convective pressure gradient

D ~0~ t
27

increases monotonically from a value of -—at~= -1 to a value
y+l

2of Oat~=—
(
value of ~

)
for ~1=0, from steady-flow ●

7-1
analogy A would be expected to decrease monotonically. For the case of
A> 20 (branch III), the following reasoning can be applied: :--

(a) If the solution were to be continued for an expansion fan of

infinite pressure ratio
(

2
p~(~) =0, g

)
= — , consider the expres-

7-1
sion relating A with Z:

1
l+g 37-1

7-1

.

.
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For A to be finite at ~ = ~ requires not only that Z is zero
Y-1

but also that all

For A to be zero

These restrictions

unexpected; thus,

d%n derivati~s — for n~= - 1 we zero.
d~n Y-1

would also require
dnZ
—=0 to bet?me
d~n

on dnZ— sxe very
d~n

h=~
( Ewhen =

\

rigid snd a violation

2

)
is possible.

7-1

for n ~ U.
7-1

would not be

(b) From stesdy-flow experience, when a strong favorable pressure
gradient is imposed-on a flow in which the wall is-hotter thsn-the free
stresm, the local free-stresm velocity is often exceeded inside the
boundsry layer (that is, A > 20).

The subsequent completion of the series solution indicated a pref-
erence for the case A < 20 since in the vicinity of ~ = -1 the

profile ~ never exceeds 1. (See fig. 16.) It should be noted, how-
U1

ever, that, in the region ~ > -0.~, the profile of reference 15 shows
a tendency to exceed 1.0. This value of ~ is such that the error
srishg in the series solution by neglecting 0(1 + ~)3 is of the same
order as the velocity overshoot.

In view of the foregoimg srgmaents, the following policy was adopted:
The branch of the solution for X ~ 20 is considered to be the correct

and most accurate one. Results of this solution includhg pertinent
derivatives may be found in table I. Results for both branches I smd III
will be presented in some cases of ?6 and & since, as mentioned

before, the integral method itse~ csnnot distinguish the behavior inside
the boundsry layer.

From sn inspection of figure 15, a msxirmm value of ‘Q is evident

in both the integral snd power-series solutions. Such a maximum was
expected since the ratio of

has sn initial value of 1.0

and increases thereafter so
(See accompanying sketch.)

free-stresm total enthslpy to wall enthalpy
2

at!= -1, decreases to — at ~ = O,
7+1

that it passes through 1.0 agati at ~ = 1.

—.

— —
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-1 0 1

.

.
—

Since the difference in these enthalpies may be considered a measure of
the influence of the local free-stresm flow on heat transfer, the heat
transfer to the fluid would be expected to increase from an initial value
of zero to a positive maximum, return to zero, and final~ become nega-
tive. The fact that the positive maximum at ~ = -0.6 and the return
to zero at E = O.~ for solution I occurred at lower vslues of ~ than
the maximum and zero difference, respectivem&, in the stagnation enthal-

--

pies reflects the past history of the bounds&-layer flow. Energy has
*—

been added to and stored in the boundery layer so that at a given value .

of ~ the total enthalpy distribution in the boundary layer is entirely .“:
different from that which would have existed if the local free-strem
condition had been constant to that petit.

—
Similsr behavior occurs for

.

branch III.

A msxhum also exists in the curve of the variation of ?= with ~

for the integral solutions (fig. 14). (It does not appear in the series
solution since this effect requires consideration of terms of 0(1+ g)3
or higher.) A simple explanation for its occurrence in this particular
range of ~ is not obvious although the existence of a maximum at some

~.

point in the expansion wave will.be argued. —

Although the computations have not been csrried out to lsrge values
of ~ (and, as discussed previously, the n-o-slipconditions me violated),
sm idea of the behavior of ?e snd ‘~ under the Prandtl boundary-layer —

—
assumptions can be obtained frcunphysical considerations.

[ =0),
For an infinite

expansion-fan strength Ql the following conditions apply:
.

2.
gl=—

7-1
—

,

H1 hl
—=— + *Q12
Hw hw

=o+~
7-1
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Thus, although the free-stream density, pressure, and temperature
all become zero, the nondimensional free-strem velocity U1 ~

Hl
stagnation enthalpy ratios ~ are finite. If this situation is repre-

W
sented as an infinitely thick boundary layer separating a surface from
a stresm of finite velocity and total en%hslpy, the wall shear snd heat
transfer would then become zero. The following sketch indicates the
anticipated form of the curves for ?= and ~, the solid lines denoting

computations and the dashed lines, possible extrapolations.

\

\
\

\
\

\
\

o \ _—— ——
\ /-
\ //\ /-.— -

-1 0 1 2 3 4 5

E

For the wall she= to approach zero as 3 approaches A
requires

a msxtium on the curve of the variation of ?E with ~. Similsrly, the

curve for the variation of ‘~ with 5 must have both a max- ~d

minimum value.

Dimensionless velocity and enth.alpyprofiles inside the expasion
fan for various values of ~ are shown in figures 18 and 19 for the
branch I solution. One may note in figure 18 that the value of the
dimensionless normal ordinate at the edge of the velocity boundsz’ylayer

(y)

increases newly linearly with 3 in the range -004~~ ~0c60

r ~Et ~u

U1
Since ~ = %(1 + ~) and A does not chsnge drastically, it is to
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be expected that the slope of
nesxl.yconstant in this range

NACA TN 394i

the velocity profile at the wall would be
and hence restit—

stant skin-friction psrsmeter. (See fig. 14.)

(dYAlthough the value of — is also
vEt

6L

in an approximately con-

a~roxhately linear in

the ssme range, the wall heat transfer is not constant because: (a) ~
J%

is not linear in ~, snd (b) I’ approaches and passes through the value 10.
Condition (b) requires an inflected enthalpy profile and a resultant
reversal of the sign of the heat transfer. (See curve for ~ = 0.6 in
fig. 19.)

The behavior of the solutions at the leading
fan merits consideration. Consider the follow~

For six-term series:

edge of the expansion
limiting equations:

L \ 2“

()Jg+ulhlz=lhrll~ = mu 0.u48(1+ g)
g+-1 ~+-1 g+-1

For six-term series:

lim ?G =
5+-1

For five-term series,

(141)

.

.

(142a)

(142b)
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Consider the ssme limiting equations for the case of a vanishzly
weak positive or negative shock (that is, us+ *s&, ~~+o):

For the six-term series:

(143)

For the

For the

six-term series:

(144a)

five-term series:

Mm ?==lim

The ratios of the limiting values in the expansion fan to those in
the shocks are then

For the six-term series:

‘exp 0.EL48
—. —.o. ~26

~~-1 %hock 0.20406

(145)

.

.
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For the six-term series:
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.

For the five-term series:

10I25 ~ ~~—= .
09547

.

,(146a)

(ltib)

Similar ratios may be found for W and & The power-series

solution, which is exact at g = -1> also yielded a ratio of ~e exact~

twice the Rayleigh (vanishingly weak shock case) value. These results
will be applied in a later section to obtain approximations to the inte-
gral solution for any gas.

DISCONTINUITY SOLUIIONS 4—

At Trailing Edge of l@aasion Fan
&

Solutions to equations (llkb) and (l14c) for branches I and III
obtained at the weak discontinuity arising at the trailing edge of the
emwaion f= me show fi figures 20 and 21. For type I solutions, the

‘i (the subscriptratio — i indicates conditions inside fsn at trailing
ej

edge; the subscript J, conditions outside fan at trailing edge) was in

@i w=‘i < 1.M whereas qthe range 1.05~ — .
8J

d
O*93s~s 1.100 For branch III, the rsnges

$j

in the interval

were ().$~!?l
ej

and 098 S ~ S 2.2, respectively..
$J

As mentioned previously,

from the continuity equation (113) varied from those given in
by no more than 2 percent. For branch III ahd for values of

s1.I.2
the vslues

figure 20
~te >0.6,

no solutions could be found with a physically acceptable value of b
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(that is, 0(1 - lo)). This inability to match the

edge may be construed as a further srgument sgainst
solutions.

75

values at the trailing

the use of branch III

‘fice(?7=3‘d(H%’‘hedisconthuowchange h Z

snd W at the trailing edge represents a Z-jump snd a W-jump h the
boundary-layer chwacteristic system. These jumps may be considered
snalogous to the chsnge in values of the Prsndtl-Busemann parameters
(Cl sad C2 of ref. 22) at a vortex sheet in the steady-flow character-
istic system since there Is a discontinuous variation without any inter-
section of characteristics of the sane family. Of course, these Z- or
W-jumps exist only mathematically, since in the physical flow viscous
effects would diffuse the jumps into steep gradients with the peaks
rounded off, a situation similar to that in the stesdy flow where the
vortex sheet would undergo viscous diffusion.

.
()
A
-fei ()&f

m figure 21-are shown the ratios —

()

and — of the shear
?E

(%)
,A

J 3
stress and heat tfansfer on opposite sides of the trailing-edge discon-

tinuity.
?

Both solutions exhibit ~~ 1.0, a relation which was expected

‘J
for a flow emerging from a region of favorable pressure gradient into
one of zero gradient.

For weak expansion waves the trend of the heat transfer at the
trailing-edge discontinuity is that which would be expected from Reynoldts
analogy in that the heat transfer decreases similsrly to the skin fric-
tion. However, for values of ~t~ > -0.2, the opposite occurs and the

heat trsasfer in region ~ at the trailing edge exceeds that inside the
expansion fan. No obvious argument is apparent to justify this behavior.

Velocity smd enthalpy profiles on opposite sides of the trailing-
edge discontinuity are shown in figures 22 end 23. Corresponding pairs
of velocity and enthalpy profiles show only a slight deviation across
the discontinuity.

The velocity profiles inside the fan are fuller near the wall than
in the region ~ because, as mentioned previously, the favorable pres-

ei
sure gradient is absent in ~. Since ~= 1.0 and the thicknesses of

J
comparable pairs of velocity profiles sxe nearly equal, the adjustment
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of the boundary layer at the trailing edge of the expansion fan is
.

essentially a transfer of momentum from the inner part to the outer part
of the boundsmy layer. .

At the Contact Surface in a Shock Tube

Equation (120) was solved for various expansion- and shock-wave
pressure ratios for the special case arising when the same gas is used
in both the high-pressure snd low-pressure chambers of a shock tube.
These solutions tidicated no change in sheex stress across the discon-
tinuity, snd only a small decrease in the msgnitude of the heat-transfer
rate although W, I’,and b show extreme discontinuities which, of
course, would be rounded off by viscosity. At first glsnce this heat-
trsnsfer result might appear to be incompatible with the physical flow
since across the contact surface there is always a discontinuity in the
free-stream stagnation enthalpy. For a recovery factor nesr 1.0, the
heat-transfer rate might be expected to vw as the difference between
the free-stream st~ation enthal~ and the wall enthal.py. (For example,
when Mc = 1.0, this difference is -0.1~ in region ~ and 0.5~ in “

region a). However, on further inspection, it appesrs,physicallyplausi-
ble to expect the heat transfer to change only slightly although the free
stresm chsnges markedly. As the outer contact surface progresses at free-
stream velocity, the colder fluid forming the outer part of the boundary
layer just behind the contact surface overrides the hot fluid nesx the

.

wall. Consequently, since the fluid adjacent to the wall originally csme
from region a with a high stagnation enthalpy, it still possesses enough .
energy to maintain a large rate of heat transfer simultaneously to the
wall and to the outer part of the boundary layer. The enthalpy and veloc-
ity profiles for the case ML = 1.0, ~te= o> Ed = 0.833 in the region

new the entropy discontinuity are shown in figures 24 to 26. These fig-
ures show the initial hot-fluid entrainment near the wall and the subse-
quent rapid read~ustment as the energy of this fluid is given up to the
wall.snd outer boundary layer until finalJy all identity with the previous
flow in region u is lost and the boundary layer behaves as one would
expect if region ~ had been the only influencing factor. Although the—

(i-Y
velocity boundary-layer thiclmesses — at

vet

matel.yequal on both sides of the discontinuity
boundary-layer thickness immediately behind the

times that ahead of the discontinuity(that is,

u
—= 1.0

)
are approxi-

U1

(see fig.”24), the thermal
discontinuity is msny

)0(10) s A
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much linger thickness of the thermal layer in this region is justifiable
on the physical basis that the temperature is forced to go first from TV
to a value ne= Tu> Tw in the hot sublayer and then revert back to

T~ <Tw in the outer layer. (See figs. 25 ud 26.) No such behavior

is required for the velocity since uc = ~. of course, because of the

effect of mixing and diffusion, the discontinuity of zero thickness itself
is a physical impossibility; thus,the profiles in the hmnediate neighbor-
hood of the contact surface do not physically exist, although the trends
exhibited are probably correct.

DISC~SION OF CHARACl?ERISTICSSYSTEM

The Characteristic Plot for the Shock Tube

Since the unifying influence on all the various particular solutions
to the localized phenomena existing in the shock-tube flow (the effect of
only one waD being considered) is the characteristic system, brief men-
tion of a few slgnifi.csntfactors will be tie at this point. First, all
solutions have been obtained in conical form in that.everywhere Z, W,
h, I’,snd b are functions onlyof ~. Consequently, although the
slopes of sny characteristic curve are equal to the product of time t
snd a function of ~, the limiting lines dividing the inte rations from
E = -1 and those from ~ = Es sre invariant with time. fSee eqs. (53)

and (54a).) A boundsry-layer characteristic diagrsm for %e =Ois

shown in figure 27 snd may be considered typical of the diagrams for all
gte ~o.5. l?ree-stresmflow characteristics and a particle path are also

shown. The regions _.lsgs~z* - 6w*s E.sgs emerge as two com-

pletely independent regions since no boundary-layer characteristic in
one region was generated in the other. Only the region 5z*S E < ~w*

depends on both the expansion- and shock-wave strengths because char-
acteristics which originated at ~ = -1 and ~ = Es cross this region.

From the characteristic theory, in the region of validity of the
equations, there csn be no discontinuity in the functions Z or W but
there msy be discontinuities in the derivatives of Z sad W. At the

location ~ = ~z*, there are disconttiuities in both
e)+ ‘d (%’

whereas at the location ~ =
()

E~* only 5W is disconttiuous.
z-
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Location of EW* by the “Anchor point” Method ,

The fortunate circumstance that Z is continuous across the entropy
discontinuity (for the case of the same gas on both sides of the discon-
tinuity) permits the analytical determination of both the location of
EW* add values of W, r’,and b along ~w* (all of which would other-

wise have to be obtained by numericaL snd graphical methods) snd thus a
“anchor petit” is available toward which the graphical.isocl,inemethods
used for ~te ~ 3 ~ ~d must converge at EW** The mathematical device

employed to obtain this result is to slu?inkregion u to zero, to let
region ~ exist from ~te to 3s, and then to solve the resulting

—

positive-shock equations. This distortion of the potentisl flow leaves Z
completely unchanged from its distribution whet u is nonzero, since z is
still ltieer and continuous in the titerva.1 E.z*S 5 S ESO (See acc~-

Pm sketch.)

—
—.
<—

.

ey ‘-
w Anchor point

‘>’”.Distorted \\
o I I I I \
-1 ~te 5~* iw* Ed ks

k

Furthermore, the curve for the variation of W with ~ will remati
unchsmged in the tit@rv~ g ~ ~w* since the w-c~ac~eri$tics or@-

.— ..——.

inate at 3 = -1 and the Z-characteristics,although they originate at —

-“
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k = g*, csrry

interval ~ >

79

the unchanged (correct) value of Z at each ~. ~ the

gw*, the distribution of W is now both linear and con-

tinuous but does not represent the true distribution; however, at ~ = EW*Y

the value of W is correct snd can be computed analytically from its
linesr variation from O at ~ = Es. !I!heterms I’ md b, which are

const&nt for EW*SES5S in the distorted flow when region a has zero

width, are also the undisturbed values at ~ = ~w*.

Physical Significance of the Critics3.Characteristics

The mathematical singularities ~z* and 5W* of the characteristic

integral solution have been found to be the limits of forward integration
along a characteristic if the mathematical sequence of events is to follow
the physical sequence. The further significance of these integral singu-
larities in relation to singularities srising in the complete Wandtl
boundary-layer equations snd @ the physical flow will be discussed in
this section.

The complete unsteady Wandtl boundary-layer momentum and energy
equations given in appendix E (eqs. (En) and (E12)) @ ‘thetransformed

coordinate system .~,q,t contain the term ~ - ~
alj

as a coefficient for

a~f ag—, snd g. Consequently,
aqae’ a~

in the region where ~ approaches

singulsr behavior might be expected

af

an-

( af )Such S~ar points ~= —= ~
aq ~t

are roughly related to the
a~

location in the boundary layer at time t of particles which were orig-
inall.yat x=O ~ t=o. Nowat x=O~ t= ojwhentheflow~
originated by the instantaneous formation of the expansion wave or shock
wave or both, a singularity was propagated no- to the wall out to all
values of y. This singubrity coincided with the expansion wave (which
at t= O has zero thichess regardless of strength) or shock wave or
both. ~ the case of the shock tube when both exp~sion. waves ~d shock
waves appesr stiultsneousl.ywith the diaphragm burst, the singularity is
also concurrent with the position of the contact discontinuity at t = O.

The boundary-layer assumptions admit no diffusion in the streamwise
direction so that this singularity is conveyed alogg with the boundsry-
layer flow snd, at sny time t, will appear at a value of
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J
t

x= u(x,y,t) dt
o

Consequently, in the complete boundary-layer equations, the mathematical

singularity at ~ = ~ may be assumed to have a correlation with the
a~

physical location in the boundary layer of the generating singularity or
contact discontinuity. In the shock-tube case the singularity reflects
the separation within the boundary layer of the fluid accelerated by the
shock from that set in motion by the expansion wave. The contact surface
is anslogous to the “critical characteristic’tfor the potential flow.
The y-location of this singularity will vary from y = O at x = O to
Y= b at x= Ult.

Since integral solutions are not affected by details of the flow
inside the boun~y layer but only take into account integrated aver~e
effects, the aforementioned singularity will also appear under averaged
conditions. Instead of the singularity distribution, at various values
of y for various values of ~, which is found in the physical flow and
in the complete Prsndtl boundary-layer equations, the singularities sre
lumped together s@ appear for all values of y ~ 8 at a particul-m

E = E** The fact that the averaged location’of the singularitiesin
velocity and enthalpy do not coincide in the integral solution (that is,
~z*# ~w*) maybe attributedto the fact that the velocity ad ent~lpy

boundary layers are identical neither in profile shape nor in thickness.
Thus the two critical characteristics represent different aversged posi-
tions of the same physical singularity.

Additional discussion of the appearance of singularities in the com-
plete boundary-layer equations for the expansion fsn may be found in ref-
erence 15. In reference 23 the case of a semi-infinite flat plate tipul-
sively set in motion is treated, and the analogous problem of the relation
between a similar singularity arising in the complete eqyations snd that
in the integral equations is examined.

Momentum sad Energy Shocks

J

.

-.

In any characteristics system, the merging of cluxracteristiccurves
of the same family denotes the end of the continuous distribution of the
dependent variables. For potential flow, the resultant discontinuous
change is called a shock wave and this definition will also be applied
to any discontinuous change in the boundary-layer.parameters Z snd W
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. resulting from the intersection of characteristics of the same family.
Such a shock is formed by the Z-characteristics for expansion waves with
values of ~te ~ 0.508 because the slope of the characteristics orig-

inating from ~ = -1 is greater thsn the slope of those originating
from ~ = ~~. ~ figure 28 characteristic diagrsms for the Z-characteristic

fsmily are sketched for the cases of

(a) Ete= -0.5<<0.508

(b) Ete = 0.4+0.x8

(c) &te=o.508

.
(e) ad(f) Ete= 1.00

.

The relative slopes of these sketches are distorted in order to indicate
more clesrly the convergence or divergence or both convergence aud diver-
gence of the characteristics. For tiues of ~te <oT508 (fig. 28(a)),

there is no mergimg of the characteristics, although es ~te+0.508

(fig. 28(b)) the heavy density of characteristic lines behind the
expansion-fan trailing edge indicates a strong gradient. men ~te = 0.508

(fig. 28(c)), the Z boundery-layer characteristic fsmily in regions ~
and u has a slope equal to.that of the”upstresm potential-flow char-
acteristic (expansion-f= trailing edge) and all the Z-characteristic
lines from ~ = -1 ere trapped at ~te = 0.508 snd extendto t= ~

tiong ~te = o.~8. This condition is the initial formation of the

Z-shock due to the merging of the characteristics. For values of ~te

between 0.~8 and 0.62, the sketch (fig. 28(d)) is drawn for convenience
with the Z-shock located concurrent with the e~ansion-fsn trailing edge,

. but this location has not been established mathematically. The only math-
ematical restriction on the Z-shock location under this condition is that
the slope of the shock must be between the slopes of the bound-

.
characteristics.



82 NACA TN 3944

Methods for Extending Present Results

Since X ~ O in the fan, it csn be proven for ~te > 0.508 that

any Z-characteristic entering the fan must be bent from its direction in
region { toward the trailing edge of the fan. Although computations
in the expansion fan have not been extended past ~ = 0.62 = ~Z* in the

fan, two prhne possibilities exist for flows with values at the trailing
edge of ~ > 0.62. One is the shock-free flow diagramed in figure 28(e)
in which the vs2.uesof ~ for all the Z-characteristic lines approach
E&* = 0.62 asymptotic~ly. The other possibility, sketched in fig-
ure 28(f), shows a Z-shock which must be located at ~ ~ 0.62 to permit

characteristic intersection since the characteristics from ~ = -1 can-
not cross this line. Until the hyperbolic differential equations are
solved for this region, the choice of one or the other of the flows would
be purely speculative.

The method of procedure for solution where gte> 0.62 would be
similar in may respects to that employed for determining the flow and
shock location of a supersonic field about a cone (that is, integration
backward towsrd the axis uutil certain conditions are satisfiedon a rav

.

.

from the origin of the conical system).

For the shock-f’ree

(a) Assume a value

()(b) Compute ~

+

case, a possible

of
()-

~at~
5E

at~= 0.62; w

.

procedure would be:

.

= 0.62.
.

and Z are equal to the value

at k = 0.62 obtained by integration from ~ = -1.

(c) Integrate forward
@gj alOW (~)+ ‘dbac~d ~i~

()

6Zalong to obtain values of W and Z at various values of ~.
z-

)o0
(d) By trial and error, find the value of ~ at which the trailing

edge could be located in order to satisfy simultaneously equations (l14b)
and (l14c) with the values of W and Z obtatied in (c) and also the
value of Z obtained by integrating forward $rom the corresponding shock
to the trailing edge.
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For the shock case the procedure would be slightly more complicated:

(a) Asswae aZ-shock location ~zs

(b) Solve simultaneously equations (1.14b)and (l14c),with ~= E+zs

for A, b, and e on the positive side of ~zs

(c)5 (d) PrOceedm in(c) and(d) forshock-free case.

!IWOpoints of interest “inregard to the preceding outline of pro-
cedure should be noted. First, it is not to be expected that every assumed
slope at E = 0.62 or shock location ~zs would yield an eventual solu-

tion; in fact, one of the cases might be entirely eliminated snd only a
portion of the remaining case would be valid. Secondly, the possible
difficulty which would be introduced if the W-characteristics either
merged or reached their asymptotic value is not considered. By employing
the anchor-point procedure to locate gw*, it was found that, for a shock

tube employing air throughout, this difficulty sxises at 3W* = ~te = 2.25.

THE C~E SOLUTION FOR THE BOUNDARY LAYER IN

ASHOCK TUBE FOR 7=1.4, Re=Rcn, ~ A~20

Combination, on the basis of the boundary-layer characteristics
system, of the component solutions described in the foregoing sections
results in the general solution for the ~ boundsry layer in a shock
tube in the entire region affected by the shock or expsnsion wave. The
solution for the case of ~te . 0 is illustrated in figures 29 to 32 by

the solid lines. The dashed lines show possible smoothing or rounding
off of the discontinuities. The trends shown by these figures are typical
of the other values of ~te.

Since the solution for the flows inside the expansion fan snd between
the shock snd entropy discontinuity have been discussed in detail, a brief
discussion of the behatior OIW ~ the region Ete .‘g~6d is presented.

Here Z was computed analytically and W, by graphical integration. Fig-
ures 2g and ~ show Z to be linear snd continuous in this rage with a
discontinuity in slope at 3z*; whereas W is almost linear for

. ~te~ k 5 ‘5W* and then displays very strong curvature as ~ ~~d because

of the siljustingprocess required titer the entropy discontinuity. The
. value of b changes very little for Ete < g < ~w* ~d then becomes ve~

small as W becomes large (~ ~~d).
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In the constant-pressureregion between

decrease in a manner similar to the decrease
a semi-infinite flat plate or behind
tame from the leaiEng edge or shock
and ?e, the flow between ~te and
negative shock of velocity Es = ~zo

linear extrapolation of the curve of

a shock

.

found either in the flow over
or negative shock as the dis-

increases. fi fact, in regard to Z
—

5Z* is identical to that behind a

(En is the point in fig. 29 where

the”vsriation of Z with g inter-
sects the Z-sxis), the outer potential-flow conditions being identical
to those In region t.

The value of ?e reaches a minhum at ~z* snd increases continu-

ously and monotonically thereafter to a theoretically infinite value at
the shock. On the other hand, % ‘ises ‘l~ht~ from %* to %J*
qd then begins the rapid adjustment to the large negative values existing
at the entropy discontinuity. The zero heat-transfer point appears in
the interval between ~w* ud ~d. Between the entropy discontinuity

and the shock, the value of ‘~ decreases continuously and monotonically

to -’=.

A composite disgram of the distribution of velocity =d enthalpy in
the boundsry layer of the shock-tube flow is shown in figure 33 to com-
plete the description of the entire boundary-layer flow for ~te = O.

In parts (a) and (b) of figure 33, the profiles existing at the various
.

values of ~ m?e plotted at that value of ~, and in psrt (c) the extent
end location of the various waves and regions are indicated. The profiles .
existing on both sides of the trailing-edge discontinuity sme drawn.

—
The

enthalpy profiles existing on opposite sides of the entropy disconttiuity
have been illustrated previously in figure 25. The maximum boundary-layer
thicknesses are located at the entropy discontinuity at sny given the t
and a second smsller maximum in velocity boundery-l~er thickness is
located at 5z*.

Complete distributions of ?C snd “~ in the shock tube for various -—

matched values of expansion- and shock-wave strength are plotted in fig-
ures 34 and 35. (Lsrge-sizeworking plots of figs. 34 and 35 are available _
on request from NACA Headquarters, Washington, D. C.) These curvesj similar
to those for Ete = O discussed previously, permit the evaluation of the

wall shear snd heat transfer at sny point x,t or ~,t in a shock
tube by using a single gas having 7= 1.4 and Npr = 0.72 for shock-

pressure ratios up to approximately 5. The dashed line, representing
the expansion-fan solution, is used for E ~ ~te and the solid lines, .

employed thereafter, are used for the constant-pressureregions ganduo
These curves may be used in conjunction with the equations of reference 7 .
to predict waves generated by wall effects’on sn averaged basis (thick
boundary layer).
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If the method of reference 11 (thin boundsry layer) is used to pre-
dict the wave generation, it is necessary to determine the vertical veloc-
ity v~ existing at the edge of the boundary layer. Integration of the

continuity equation (eq. (B3)) from y = O to y = b smd application
of the boundary condition Vw = O results in the following expression

for v~:

rThe nondimensional parsmeter vb ~ is plotted as a function of ~ in
VE

figure 36 for the expsnsion fan in general and for particular values of
expsnsion-fsn strengths ~te = -0.6, 0, and 0.5. AhO shown in this

i
figure is the empirical curve Va ~. 103@@% This cuxve gives

v~

a very close approximation to the computed results in the fsn and would
prove to be useful in the analytical integrations required if the method
of reference U were to be extended to consider the expansion fan cor-
rectly. The rapid increase in vb as ~ +~d is due to the rapid
increase in boundsry-layer thickness in this region because of the pres-
ence of the hotter gas (low density) from u entrained in the boundary
layer.

APPROXIMATE SOLUTIONS FOR THE

SHOCK TUBE USING ONLY

BOUNDARYIAYERINA

ONE FLUID

The complexity of the solutions to the reduced hyperbolic differential
equtions for the shock-tube flows is such that an approximate solution
resulting in a large reduction in effort with only a small loss in accu-
racy would be most desirable. Such an approxtiate solution is described
in this section. For purposes of discussion, the previous numerical and
graphical solutions to the differential equations will be termed “correct”
or “exact.t’.

.
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Negative-Shock Approximation for the

Expansion Fan and Region (

The s~lest approximation available is the replacement of the expan-
sion fsn by a negative shock. This substitution was first suggested in
reference 7 and was also used as the basik for the computations of ref-
erences ~ snd 13. In figures 29 to 32, which represent conditions in
an air-air shock tube with ~te = O, the results obtained by the negative-

—

shock assumption with both consideration and neglect of the critical char-
acteristics are plotted for comparison with the correct integral solution.
(Similar results are obtained for other values of gte, the discrep~cy

between the negative-shock and correct solution increasing or decreasing
as ~te increases or decreases.)

The skin-friction parsmeter ?C h the region g Z 5Z* does not —

depend upon the expension when the critical characteristic is considered
and is hence the same for both methods; this fact is alSO true for “~

in the region E Z 5W*. It is evident that the negative-shock’distri-

bution is a very poor approximation to the skin friction and heat transfer
within the fan snd that qualitative agreement exists only in the region

~te~ ~ ~~Z*”
.

If it is assmned (by neglecting the critical cluxracteristics)that
the negative-shock solution is valid from the leading edge of the expansim”- -
fan all the way to the entropy discontinuity (refs. 7, I-1,snd 13), the

.

distribution between 3z*S ~ ~ ~d is shoin by the heavy extensions to

the negative-shock cmves. Neglect of the critical characteristics is
tantsm%nt to
originated at
tive shock of

assuming that th~ flow generated by a negative shock which
time t = O is equivalent to a flow generated by a nega-
the same strength originating at t = -m.

Modified Negative-Shock Approximation

Inside expansion fen.- In view of the failure of the simple negative-
shock method to produce results that even qualitatively approxtiate the
true expansion-fan results, a more refined method of approximating the
expansion-fsn solution with the negative shock as a basis was devised and
applied to the entire shock-tube boundary layer. The relation between the ““-

true fan end the negative-shock wall-shear and heat-transfer functions for
the vanishingly weak wave has been discussed and was found to be: .
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and

[%(E)jA

Fsn
= 2.000

[%(~.e~
Negative shock

If these relations are assumed to be valid not only in the limit
~ +-1 but also throughout the entire expansion fan, the distribution
of FE and ‘& may be approximated as follows: At a given value of ~

inside the expansion fan, let the value of ?6 or “~ be twice the value

. (at this ~) obtained from the negative-shock solution for a constsnt
potential flow id~ntical to that existing at ~.

. The results of this approximation slong with the correct expansion-
fan results are plotted h figures 37 snd 38 for 7= l.ko and Nw = 0.72.

The approximation for ?e is seen to have a negligible error for ~ <0

snd an error of only 13 percent at ~ = 0.5 (approximately the critical
characteristic for the negative shock). The approximation for “~ diverges

at lower values of ~, reaches an error of 20 percent at ~ = -0.5, snd
increases thereafter. The reason for the relatively close sgreement for
FE over a large range of & and the more rapid divergence of “~ lies

in the fact that ‘~ is much more sensitive to the boundary-layer past

history of vsxying values of H1 at the edge of the boundsry layer. In

fact, the approximate value of & would not become zero until after

Hl> Hw (r < 1) whereas the correct ‘~ becomes zero at E = 0.5 where

H1<HW (r>l). Therefore, in order to compensate for this effect, the

approxhate curve for the variation of “~ with E in the rsmge
.

-0.5 S ~ S 0.5 is replaced by a straight line originating at the approxi-
mate value of “~ at E = -0.5 snd passing through zero at E = 0.5.

The equation for HI* is
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Consequently, the value of H1* passes through a minimum at ~ = O
4

ad becomes O at E = 1 irrespective of 7; therefore, the linear approx-
imation should be appropriate for other values of 7. tie
introduced by the linear approximation for values of NW
is not predictable.

possible error ‘
other than 0.72

In region ~.- In the limit of ~ +-1, the relation

r 1

1(~)]z
Fan

=

[1
0.56ss~

Z(~te)
Negative shock

for ~ = gte + -1 was found to apply. It is now assumed that this rela-

tion is also applicable at the trailing edge of all finite exp-ion fans.
In addition, at the trailing edge of the fan, the matching solution showed

Zi
that the approximation —S 1.0 was

Zj

on the ~-side of the trailing edge of
approximated as

appropriate.

the expansion

[1z(~te)~= ~z(gte)Negative shock, ! (.1 ~

Thus the value of Z

fan may be closely

.

,

where the negative shock is that which produces conditions of region ~
behind it. Figure 39 shows that this approximation compares closely with
the correct values. The Z-distribution in the range ~te S 3 ~ gz iS

linear and maybe computed from equation (102). The sheerstressfollows
from equation (lW) if a zero value for A is used.

The heat-trsnsfer paremeter ‘~ for ~te ~ 5 ~ ~Z* WaS computed

from equation (133a) by using the values of .?e described previously

snd values of b(Bl) frcm the negative-shock solution. In this respect,

it should be noted that the value of b in the correct solution changes
c~s~w*only slightly in the interval ~te . and, furthermore, the value .

of b for the corresponding negative shocks.is a good approximation to
the b-values in the region ~ for ~ < ~w*~
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The distribution of ~ for 5~* g E g k~*

(correct solution was nesxly linear, fig. 35) and

was computed by the anchor-point method. For the

89

was assumed to be linear

the value of &(5w*)

interval 5W* ~ g ~ ~ds

an inspection of the correct solution shows the following:

Consequently, the

(qgw;o, (%)Ed

following titerpolation formula which gives

= -m, and (A~)E = (6E)~ at ~d ‘s ‘ed (the

square-root term was used to tie the slope a weak infinity at ~d):

G@ = a&*) +

{
[1
~hd) -

u

The value of
()&d

at Ed is

ww*)};,;;(-fpj(148)

known from the positive-shock solution.
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Summary of modified solution.- The refined approximate solution for .

the boundary layer in a shock tube when the ssme gas is used throughout is
outlined as follows:

—

Inside fsm:

Region ~:

.

.

.

[1(a) E = E.te: z(~te) = ~ z(~te)
Negative shock, ~te

(b) Ete S E S E,Z*: The value of Z is obtained from equation (102)

by using ~te as the base point; ?E is obtained from equation (130);

and “~ is obtained from equation (133a) by using values of b snd B1

from the negative-shock solution.

(c) E.J$sE s +q*: The value of Z is obtained from equation (102)

by using ~d as the base point; ?6 is obtained from e,quation(1~)

(Z and ?e me also exact values); ‘~ is linear; and the value of ‘~(~~)

is obtained by the anchor-point method.
.

(d) ~W* S ~ S Ed: The values of Z snd ?= we the same as those

for condition (c) (these are exact values); snd & is obtained from

—
.

equation (148).
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The results of this approximation for the shock-tube flow are com-
pared with the correct solution for three expansion and shock strengths
(7= 1.4 and N~= 0.72) in figures 40 and 41. In region a the
approxhate and exact solutions are identical. The sgreement between the
approximate and exact methods is seen to be very favorable for the cases
represented.

This approximate method is assumed to be applicable for N= other

than 0.72 snd the approximate wall-shear and heat-transfer distributions
have been computed for the case where the same gas exists in both e
and w with 7 eqyalto 1.4 and N= equal to unity. The appropriate

shock and negative-shock results were utilized and heat-transfer results
sre shown ti figure 42. The skti friction is identical.to that for
NW = 0.72 for the preceding approximation since the constant potential-

flow momenta eqmtion is independent of N=. However, in the exact

solution ?E depends on N= in the fan through the pressure-gradient

term in the momentum equation; this dependence would influence the entire
region ~ g ~z*. TMs dependence is probably small and is neglected

herein.

APPROXIMNI’ESOLUTION FOR THE BOUNDARY LAYER IN A SHOCK TUBE

WING TWO DIEWRENT IZUJIDS

In order to obtain Wge shock-pressure ratios in constant-area
shock tubes, it is comnon practice to use a gas with a high speed of
sound as the driver gas in the high-pressure chsmber. Hydrogen or helium
are two such gases often employed. When various expansion-fan strengths
for hydrogen or helium are matched to the appropriate values of shock
strengths for air, the boundary-layer solutions of the resulting shock-
tube flow in the regions E < 0 or E > ~d may be determined by either

the exact or the approxhate methods described previously.

However, the region O ~ ~ ~ ~d presents additional difficulty if

an exact solution is to be found. This difficulty arises because the
boundary layer in this region contains both gases which were initially
ahead of and behind the diaplxre.@,the inner part of the boundary layer
being comprised mainly of the gas that was originally h c! and vice
versa. The relative distribution snd concentration of these gases through
the boundary layer will depend on many factors, one of which is diffusion
normal to the wall. Wtead of attempting to solve this problem exactly,
the approximate method described in the following paragraphs was employed.
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First, it was assumed that the wall effects of the boundary layer in ‘
the region O S ! ~ ez* were identical to those which would have existed

if the boundary layer contained only the gas of region ~. This descrip-
tion of the boundary layer becomes more erroneous as ~ increases from

.

zero, since the relative concentration of the gas u will increase in
the ihterval from ~ = O to ~d. An approximation to the magnitude of

the errors so introduced can be obtained from the following sketch in
which the velocity profile for A= O is”assumedto represent roughly
the locus of the u@iffused contact surface ti the boundary layer between
the diaphragm station end the entropy discontinuity.

a .5

.17

0

( e )At ~z* ~= —= 0.404 , the contact surface inside the boundary
U1 5*

layer is at a value of a= 0.17; thus, for ~ < ~z*, most of the boundary

layer is comprised of gas ~.

The heat trsnsfer and skin friction for O S ~ ~ ~z* can now be

found from forward integration along the characteristics originating
in ~ < 0 or by the modified negative-shock approach discussed previously.

The next assumption was that across the contact surface the momentmn

equsl, a known fact for the case of the same gas on both sides of the
discontinuity since f3i= 8J. This assumption appears to be reasonable

because the velocity boundsry layer in the vicinity of the entropy dis-
continuity is comprised sbost entirely of the gas u.

.

.

.

.
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Since the momentum thickness e as well as Z in region a is
ususlly computed by using values of Vw for the gas u, the necessary
genersl conversion
scripts denote the
the equivalence of

factors are summarized here.
reference condition, and the
the momentum deficiencies at

In this section, sub-
conversion is based on

w !“

Eqyations
air shock
known z

(149)

(150)

(149)and (150)would be used, for example, for a hydrogen-
tube to evaluate Z in terms of hydrogen in state e from a
h terms of air in state M.

A linear variation is now assumed as the simplest approxhation to
the distribution for Ze ~d Pyw ~ the r=e 3z*~ g S $d; thus

where

and

PW(E)I.LW(E)= PW(EZ*)PW(E.Z*)+ -[PJEd) l%(~d)- PW(EZ*)Ilw(%%j

E - EZ*.
[ 1

= PW(EZ*)k + ~ Pw(%l)k - PW(EZ*)v~ (EZ*”S ~$ %) “ ‘ (152)
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since Tw = Te = T@ and since the

assumed to be ~ at ~z* and a

NACATN 3944

boundaxy-layer gas at the wall was

at ~d. The shear stress may then be

evaluated from equations (130), (151), a% (152) as

A_

.

For heat-trsnsfer computations, the region ~z* -g~ < Ed iS divided.-

into two areas by the line ~w*, its value having been determined from

the value of b of the appropriate negative-shock solution. The anchor-
point method of the previous solutions is not applicable here because Ze

is not unchanged ’inthe interval ~z*~ ~ ~ 56 when the region u is

shrunk to zero width. However, the values of b found in the
solutions from the negative-shock snd anchor-point methods did
greatly; therefore, the value of ~w* (which is a function of

obtained by using b of the negative-shock solution should be
approximation. The value of &(~W*) is then determined from

other
not differ
b)

a fair
.

equa-

tions (133a)snd (153)with the use of the negative-shock values of b(Bl).

Again, as tithe single-gas approximation, a linear variation is used
.

for ‘~ in the interval ~z* ~ ~ ~ ~w*, snd the interpolation formula

(eq. (148)) is applied in the interval ~w*~ ~ S Ed. The value of the

heat trsnsfer at the entropy discontinuityto be used in equation (148)
is

~kij; ~(gdj$$~=
The summsry of the modified solution for

outlined as follows:

(154)

two different gases may be

(a) ~ < ~z* or ~ > ~d: The solution is the ssme as the corre-

sponding solution for a single gas. .

(b) tZ* ~ ~ ~ ~v*: The value of ~fi is obtained from the negative- .

shock solution; the value of ?e(~) is obtained from equation (153); the
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. term ~(~) is linear from %( ~z*) to ~ (~w*); ~d the ~ue Of

&(Efl) iS obtained from ~e(g~) ad equation

(c) ~w*~g~~d: The value of ?=(g) is

tion (153);and the value of “&(~) is obtained

(133a).

obtained frcun

from equation

equa-

(148).

Wall-shear and heat-transfer distributions were obtained when an exact
solution was unavailable by this approximate method for two gases for
shock-tube flows using air (7 = 1.40 snd N~ = 0.72) in the region m

end hydrogen or helium in the region e. The properties of the hydrogen
and helium employed, the tiscosity behg evaluated at room temperature,
sre indicated in the following table:

t

7~ ()
Nti

Gas e R= Pe ae
—
Y. m

N= z L cm

Helium 1.190 1.000 7.236 1.082 2.935

Hydrogen 1.OCQ 1.000 14.365 0.485 39790

.

.
For the hydrogen-air combination, exact solutions sxe available

for g > Ed snd for ~ <O (since 7H2= 7ati). The assumption that

only gas ~ comprised the boundary layer for O ~ ~ ~ ~z* permitted

the exact solution (7= 1.4) to be extendedto ~Z* for this case.

The approximate solu%ionw used for 3z* ~ 3 ~ Ed for the ~tiogen-

air combination snd also for -1 S 5 S Ed for the heliun-air combination.

The results of these computations are shown in figures-43 to 46 in
which ~te is used as a cross-plotting psmmeter. (Lsrge-size working

plots of these figures sre available on request from NACA Headquarters,
Washington, D. C.) Distributions of ‘& and ?6 desired for a specific

shock-pressure ratio may be obtained by interpolation from figures 43
to 46 ad by use of the data from figure 47 which gives the values of
~te as a fmction of shock-pressure ratio for heliwn-air snd hytiogen-

.
air shock tubes.

.
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For helium, EZ* = ~te when kte = 0.435; this value of ~te cor-

responds to a shock-pressure ratio Xb=19
Pm

for a helium-air shock tube.

For hydrogen, EZ* = ~te when ~te = 0.’jo8;this value corresponds to a
Pa

shock-pressure ratio ~ - 40 for a hydrogen-air shock tube.
m

CONCLUDING RIMARE3

A solution to the unsteady lsminsr boundary-layer flow inside cen-
tered expansia waves and behind both centered expansicm waves snd shock
waves has been obtained in this report.

1. The general method for obtaining these solutions may be summarized
as follows:

(a) The unsteady
integration normal to

(b) The
series.

(c) The

(d) The
in a conical

(e) The

velocity

.

Prandtl boundary-layer equations are reduced by
the surface.

snd temperature profiles sxe expsnded in a power

wall temperature is assumed to be constant.

reduced equations are transformed into hyperbolic equations
coordinate system because the free-stresm flow is conical.

reduced hyperbolic equations are solved in closed form for
the flow behind a shock and by numeric&1 integration for the flow inside”
or behind the expsnsion fsn. Multiple solutions were fouud inside the
expansion fen snd the correct one was selected by physical reasoning.

(f) The integral technique is applied at the discontinuities existing
at the trailing edge of the expsnsion fan and at a contact surface so that
the characteristic solution may proceed across these discontinuities.

2. For the problem of the entire two-dhensional, nonstationary
laminar boundary layer in a shock tube, the following solutions were
obtained:

(a) An “exact” solution for an air-air shock tube (for a ratio of .

specific heats of 1.4 and at a Prandtl number of 0.72) was obtained with
the method described in the preceding paragraph. Inside weak expansion waves .
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waves smd in the flow region bounded by the shock snd contact discontinuity,
solutions also exist to the complete Prandtl boundary-layer equations.
The integral solution agreed extremely well with these solutions.

(b) Approximate solutions in closed form, employing zero-thiclmess
expsnsion-fan results as a basis, for the following cases:

Air-air shock tube; Prmdtl number of

Air-air shock tube; Prandtl number of

Helium-air shock tube; Prandtl number

0.72

1.00

Of 0.72

Hydrogen-air shock tube; l?mndtlnumber of 0.72

The approximate (or modified negative shock) and “exact” solutions
for air-air shock tube (Prandtl number of 0.72) exhibited very good sgree-
ment. The simple zero-width expansion-fan solutions gave very poor
agreement.

3. Some of the more importsnt features of the “exact” solution are:

(a) The existence of zones of influence l~ting the extent of for-
ward integration &Long a characteristic. The solution of the present

. report was arbitrarily halted inside the expansion wave
of one of these zones.

. (b) The existence of mornentunsnd energy shocks or
boundary layer.

at the boundaries

jumps inside the

(c) The fact that skin friction and heat transfer inside the expansion
wave nesr the leading edge was twice that for a corresponding zero-pressure-
gradient potential (that is, Rayleigh) flow.

4. Note shouldbe taken of the fact that the boundsry-layer char-
acteristic system in conical coordinates derived in this paper is only
a special case of the universal compressible-boundary-layer character-
istics system obtainable fmmthe integrated form of the Prandtl equa-
tions. This universal boundsmy-layer characteristics system is applicable
to unsteady compressible boundary layers in general and provides a powerful
tool for the attack on the problem of wall effects in nonstationary flows.

Langley Aeronautics. Laboratory,
National Advisory Comittee for Aer@na~tii.c5,

Lsngley Field, Vs., JSZNXWY y, 1?57
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APPENDIX A
.

EXPRESSIONS FOR VARIOUS FUNCTIONS IN A CENTERED

EXPANSION WAVE M3VING INTO FLUID AT REST!

The.wave is assumed to have the coordinates X=o, t=O at its
origin or center and to have a leading edge which advances into the region
x<O for t>O. The Riemann invariant (see, for example, ref. 24)
prescribes the relation, valid everywhere in the wave, between u

-1 and

%
as follows:

(Al)

Since a characteristic (wave) moves with a speed equal to the alge-
braic difference of the s-peedof sound and fluid speed, a“definite rela- ~~.__ 1
tion exists between x and t at a point dependent on ‘thevalue of ~1

and gl at the point x,t. —

(A2) -

(A3) ‘

A combination of equations (Al) and (A3) results in the expressions
for the conical form of Q1 and Al:

Lq .*(1+5) (A4)

2 .—

The assumption of constant specific heat permits the expression of
enths,lpyin terms of speed of sound. Also, since the flow is isentropic,
the pressure and density may be related to t%e speed of-sound. The fol-

.

lowing equivalents are then obtained:
●
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-

Ml = 1+ E

l--g
2

( )

2

‘1 2=1 -v~
~=%

()

7+12

2

27

:

(A6)

.:=al~-l
% ~ ()

2

=pl _
()

Y-1
% pE =1

H1 hl U12 hl+y-1u2= z

(

~+Y -1E2—= —
~=~+ 2CPTE h~ 2 –1 7+1 2

)
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APPENDIX B .

.
DERIVATION OF REDUCED BOUNDARY-LAYER EQUATIONS FOR

TWO-DIMENSIONALUNSTEADY FLOW

The Navier-Stokes equations under the restriction of the Prsmdtl
boundary-layer approximationmsy be written as

auau ()lhl~~—+ U—+V—=-– — +-—p—
atax :Pax PHY.

( )a’l+u&l +val+u3u+uau+vau =
at ax + at ~ 5

(Bl)

(B2)

(B3)

(E4)

Equations (Bl) snd (B2) are the mcmentum equations in the x- and
y-directions, equation (B3) is the continuity equation; smd equation (a)
is a form of the energy equation that is desirable when the local enthalpy
is to be a parsmeter of the solution. An alternate form of the energy
equation employing the total enthalpy as a parsmeter is given by

(B5)

An irmnediateconsequence of equation (B2) is

p(x,y,t) =p(x,t) = Pl(%t) (B6)
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Ccfmbiningequations (B6) and (Bl) evaluated in the free stresm yields:

*=% ‘1 ‘1 %( )ax S7’-PGZ-+UUX- ‘-plm (B7)

The technique of integrating each term from y = O to y = co
(see, for exsmple, ref. 25 for steady-flow integral method) is then
applied to equation (Bl). The velocity component v is eliminated
through substitution of the continuity equation (B3) snd the following
boundary ccmditions are employed:

At y = O for all x,t

u =V= o

Aty=rn for all x,t

At y=m for all x,t

The following momentum equation results:

(M)

(B9)

Equation (B9) is then rewrittenby substituting e snd 5* into equa-
tion (B9):
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For a perfect gas with a

1

(Blo)

constsmt specific h_eat,the integral term in
equation (B1O) m~ be evaluated as follows:

~“(2-’)&=~om(:- j&=-y Jo”(’-&)&~v*v*

(Bll)

or

Substitution of (Bll)
tion with x and t

J- 2

into (B1O) yields the momentum differential
as the independent variables:

or

(Blla)

equa-
.-

(B12)

.

.

—

.

(B12a)
.

.
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The ener~ equation (B4) in terms of local enthalyy is treated in
a similsr manner;
and the following

again the continuity eqpation is used to eliminate v
free-stream equality is substituted:

DH1 Dhl Du~ 1 *1—=— +ul F=— (B13)
Dt Dt PI T

Appropriate boundary conditions for the local enthalpy sre:

At

At

At

Y = O for all x,t

h=%

Y = cu for all x,t

h= hl

Y = m for all x,t

ah-O
b

resulting equation for a perfect gas of constant specific heat is

(B14)

The last term on the right-hand side of equation (B14), which repre-
sents the tiscous dissipation, may be manipulated in the following manner.
First, the Chapman-Rubesin relation (ref. 18) between viscosity and
temperature
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(1)1/2T1 +S%=: ‘I++S 1
is combined with the gas law and equation (B6) to give

Pp— = 1.0
PA

a relation valid across the boundary lsyer at arbitrg x and t.

Also since

a 1J‘P=— ~w
‘OE

Therefore,

h 1(J—=— —
by APE

(B15)

(BL6)

(B17)

(B18)

(B19)

(B20)

a+
since —

b
=0, for G?l.O. Equation (Bll+)is now rewritten to give _

the”ener~ equation in terms of the local enthalpy with independent

variables x and t: c
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L

the

At

At

At

Similsr integrations are performed with equation (B5) by utilizing
foll.owingboundery conditions on total athalpy:

Y = O for all x,t

Y = w for all x,t

Y = co for all x,t

The following equations, which
eqmtion snd are equivalent to

1

H=%

H= HI

are the total enthal.mvforms of the
equations (B14) and (=21) result:

ay+

1 ()%s
‘lH1*PE%?r,w &w

energy

dy+

(B22)
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1
UIH1*

1
UIH1*

U12

T I*le+la&=—— ——
PI at

—
U1 at

(B23)

The reduced psrtial differential equations in final form for x
and t as independent variables are:

—

.

(B24a)
.

gllo .—
Vg ulhl*

(B24b) ●
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8

.

u,2
A

1 2
UIH1* 2

U1
H1-~ -1

(B25a)

(B25b)

Equations (B24) sre for Ul, hl, e, and @ as primary dependent

variables whereas equations (B25) are for Ul, HI) e,ti~8,6

prim~ dependent vsri~les.

.

.
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APPENDIX c

TRANSFORMATION OF FWDUCED DHTERENT I/ILEQUATIONS

TO CONICAL COORDINATE SYSTEM

The differential equations obtain= in appendix
formed from the x,y,t system to a conical coordinate

Y “Y

tt=

*
—

.

B me to be trans-
system g,y,t where

(cl)

This transformation is arbitrarily restricted to conical f&ee-stream
flows (that is, all free-stresm quantities are functions of ~ alone)
to reduce the complexity of the equations while still retaining the
features that are necessary for application to flows generated by shock
waves and centered expansion waves.

The following derivatives are equivalent:

and

In particular, for any free-stresm function fl(x,t) = f@,

()af~ ~ dfl—= --—
atx t d~

(C2)

(C3)

(C4)

(c5)-

(c6)
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It should be noted that hl* is not a free-stream function for

~ = %( ~,t); thus the derivatives of hl* become

/()C7

Similar equations are applicable for HI*.

Application of these equations to
following relations:

or

r

equation (B2ha) results in the

.

(C8)

(fJ9)

In anticipation of a Pohtiausen power series for the velocity profile,

let ~s = -f(~). Derivatives of ~ mqy then be expressd as derivatives
e

of A as follows:

(Ho)
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Equations (C9) and (C1O) are combine&to give

Substitution of equations (Cl) to (C7) into equation
in the following equation:

(Cll)

(B24b) results

d

.

h anticipation of a power-series

3%s$).$7--’“.
(C12)

representation of the local

enthalpy, the restriction is introduced that w =Y(h,r,b).
7$

The fol-

lowing equations which are parallel to equations (CIQ) express the ---

derivatives of
&

(C13)

.
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The combination of equations (C12) and (C13) gives
h

.

s

#

h a similsr manner, the conical partial differential equations
terms of O a V mW be obtained from equations (B25) as

(elk)
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APPENDIX D
.

DERIVATION OF VELOCITY AND ENTHALPY BOUNDARY-IAYER

POWER-SERIES COEFFICIENTS, FORM PARAMETIIRSz

AND DISSIPATION FUNCTIONS

POWER-SERIES COEFFICIENTS

.
The coefficients for the velocity-profile power series may be

expressed in terms of A2 (coefficient of a,-2)and the highest order
free-stream derivative.

.-
The values of An are found by solving simul-

taneously equations (11) to (15) or (17) to (21) prescribing the boundary
conditions on the profile together with the profile eqyation itself
(eq. 8). This procedure yields:

.-—.

For the five-term series &
U1

If

A1=2 -~A+l~
()3 2 6U1~1

A3=-2-A2-lL
&):l

lU”1+1A2+7(~)A4= ~

a=l

For the six-term series ~:
‘1

(Dlb) ‘

(Dlc)

(D2a)

(D2b)
;-
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1:1

()A4=5+A2 -++
ad

(D2c)

(D2d)

A prime over a symbol represents differentiation with respect to the
argument of the function in question.

Local tid stagnation enthalpy coefficients are obtained simply by
replacing An in the preceding eqmtions by Bn and Cn, respectively. “

This substitution is permissible because the series expressions for local
and stagnation enthalpy and the appropriate stream boundary conditions
are identical in form to the corresponding velocity functions and boundary
conditions.

VELOCITY FORM PMMMETERS

The displacement and momentum thicknesses are
by

defined, respectively,

(D3)

After transformation to the incompressible normal coordinate u t~ough
the use of equation (5) and introduction of the requirement that — = 1ul

for az 1, the relations (D3) become

5* ‘All- *)da 0’: =
~’~ - ~~da ]

(D4)

.
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Evaluation of these functions then requires substitution of the correct
#

velocity-profile coefficients into the general relation for —~ (eq. (8))

and substituting the latter into equation (D4). Results of this calcula- “
tion for the five- and six-tern velocity profiles are:

For the five-term series ~:u~

(D5a)

For the six-term series ~:U1

L
& ‘“

5* 1 ~
%-—=. -—

A 4 24o + 24o
(D6a)

e utlt

-= O.1O1O1- 0.00063131A- o.000031566A~+ 0.0000526A~
A %U=l+

t! t

k)]
1?1 2

()
0.00168.35~ - 0.0000260 ~ (D6b)

‘1 a=l 1 -l

The definition of A = -2A2 has been utilized in these equations.

LQCAL EN’IHALPYFORM PARAMETERS

The quantity V is defined as

(D7) -
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After transformation to the incmnpressible normal coordinate @ through

the use of equation (6) and introduction of the boundsry condition ~ . 1
h,*

for B2 1, the expression

1

J(
W=v 1-

0

becomes

The profile function of ~ (eq. (9)) and the coefficients
to the term of the profile series sre substituted into eqwtion

the following expressions for v*
T

result:

For the five-term series ~:
1

hx
For the six-term series ~:

1

V* 1

()
!11

—=.
v ~r+~h*

4+120 24o ~ p=l

The coefficient B2 has been

Next to be considered is
relation

replaced by its equivalent r.

the quantity @ which is defined

$J ()‘Pul h* dy= ——
0 PE ‘1 -p

The local enthalpy boundary condition that ~ = 1 for P21
1

applied in conjunction with the velocity boundary condition u
~

J..

(D!3)

appropriate
(D8) and

(D9)

(D1O)

by the

(Dll)

must be

= 1 for

az 1. It is apparent that the relative thickness of the velocity and
thermal boundary layers must be considered in order to evaluate the
integral. For the case where the enthalpy thickness is equal to or
greater than the velocity thickness, bh~ 5U, the integral (D1.1)becomes:
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When this equation is transformed to the ~-plane, it becomes

The limit J3(bu) is evaluated

following equation results:

p(bu) = +

from the relations (5) and (6), and the

J’
5U

~dyd.b
P~ v

I

:
‘P
~dY

The quantity b is equal to 0 , and for bu S bh,

J’

b~l.
hp
~dy

OS

(D13)

When the velocity thickness is considered to be equal to or greater
than the enthalpy thickness (h ~ 1), the integral (D1.1)can be written as

and is directly reduced to

~Thus, the integral relations for ~

quantity b is less than or greater than
be written

for b~ 1:

and for b ~ 1:

are dependent

unity. These

.

on whether the

integrals may

(Dlha)

.

.

(D14b)
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v
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#-=
v
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Application of the five- and six-term profile functions of ~lq
hx
~ to equations (D14) yields
1

b ~ 1, five-term series:

[)(p_” ba +
-—

%* p.1 2,1m

[

&+b3 3b4 b5 II

() (

b2 b3 + b4 b5
+-45 42 %+s+ +GIF-= 280 )

—-~+

b > 1} five-term series:

(1111 31A1-+l--— —--f.——-
lm~ $nb 8kb2 560b3

1_+ll
b )s3-h&2,;92$ +

r

-1-

+

(D15a)

11 )1,080q +

31+l_l——
560 b3 )540 ~ +

●

(Dl~b)
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For b ~ 1, six-term series: .

$. ~ . ~ , 0.u5Q47~2 - 0.029761gb4 + 0.0138889b5 - 0.00216hhb6 -I-
.

111

(&)@l(-* + 0.00396821F-
)

0.001@klb4 + 0.0011~74b5 - 0oO00216hb6 +

nr

(%), J. &-
0.0019841b2 + O.0014~lb4 -

)
0.0009259b5 + 0oO~180hb6 +

(+=(%+:,(-o.000066136b2+ 0.00009$R06b4- 0.000077’161b5+

)(0.00001804b6 + A & - o.oo29762b2+ 0.0009921b4 - 0.0@@Ob5 +

) (@);:,(o.~o~@b2 -~*~~4~lb4+o~oo~3~~5
0aOOOO&b6 + 1 ‘*

)[o.00000677b6+ r & - 0.011$Xlk8b2+ 0.014880903- 0.oo89286b4+

!11

()(
0.00277771Jw 0.0003608b6+ uiy -l -0.0003968b2+ 0.00074hOb3-

0.0005952b4 + 0.0002315b5 - 0.0000361b6) +1(0.0002976b2 - 0.0o04464b3 +

0.0002976b4 - 0.0000992b5 + 0.0000136b6)] (DL6a)

.

.
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For b ~ 1, six-term series:

$~= 0.u5x3477& o.0297619~+ 000138889~ - 0.0021644~+
b5

()(

J& “

)
-0.0019841*+ o.oolwlb+ - 0.0009259.$+ 0.00018045 +

U=l

;) (
h* 11’

R p.1
0.0039682 ~ -

)
o.oo19841* +o.oo12.574*= o.0002164* +

(*):@):. (-0”0mti”36 *+ 0“0”m”m6 5 “ 0“0m077’61*’

)(
0.00001804 ~ + A 0.0059524 ~ - 0.0074404 ~ + 0.0044643 ~ -

b5 b3

0.0013889 b+ + 0.0001804 $) +h~~~~l (0.OCQl@+l& 0.00037202~+

0.00029762 I o ● ooo11574 1

)[

0.00001803 & + ~ 0.005%23 & -—-
b3 p+ b5 b

0.0019842~ + 0.0009920~ - 0.0001623~ +
b3 b b5

n I

()(u -0.0000992
‘1 -l

)(0.0000992~ - 0.00cQ6’1~ + o~oooo135L + ~ o=ooo2976~ -
~3 b4 b5

0.0004464~ + 0.0002976~ -
b2 )]

0.00009% ~ + 0.0000136~ (D16b)
b3 b b5
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TOTAL ENTHAI.PYFORM PWTIZRS

The q.la?ltitiesu * and X are defined, respectively, as

(D17a)

(D17b)

These definitions are transformed to the u-plane through use of eqy.a-
tion (7). Because of the similarity between corresponding relations for
the total enthalpy and local enthalpy, the equations for ❑*/U and $/u
are identical to those for the local enthalpy thickness equations (D9),
(D1O), (D15), and (D16) when $, Cl*, El, c, and Q are substituted
for $, V*, V, b, and r, respectively, and the stream boundary con-

ditions
(s;=l ‘d (*);:l ‘e ‘ephcedby (3:=1 and W:l”

DISSIPATION FUNCTION

The dissipation function @ is defined in appendix B and is given
by

For the five- and

For the five-term

six-term profiles} this integral is evaluated as:

series J&U1

.

w
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For the six-temn series %U1

(D18)

(D19)
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APP~IX E
●

DERIVATION OF COMPIJfCEBOUNDARY-LAYER EQUATIONS

FOR TWO-DIMENSI(INALUNSTEADY FLOW

The Prandtl boundary-layer equations (eqs. (Bl) to (Bh)) may be
rewritten with the aid of equation (B6) in slightly different form as

with
(eq.

ah+u&+v&
at ax by

* + b(pu) + a(pv)——
a ax ay

The “incompressible”normal ordinate
a stream function ~ which satisfies
(E2)). (A similar procedure was used

I’k.”

=0

(El)

(E2)

Y is now introduced together
the equation of continuity
in ref. 23.)

(E4)

(E5)

.
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The relationships of the partial
to those in the x,Y,t system are:

k)y,t=(aY,t +

($)x,y=k)x,y+
(\ (a\.a=—

123

derivativesin the x,yjt system

($)X,E)Y,.

(*)X,J$XY J

(a\Y—
bY/x,t Wx,tbdx,t

The stresm function is then defined by

1
()Mu=—
bY

x,t I
) (E6)

v=-%p)y,t+(#x,t(E)y(’a,jJ
Transforming the equations of motion (eqs. (El) and (E3)) to

x,Y,t coordinates with the aid of the preceding equations, employing
the Chapmsm-Rubesin tiscosity-temperature relation (appendix B), and
considering the Frandtl number and specific heat to be constant results
in the following equations:

(E7a)

.(-+a&)+-+.@+(2$~+a~ah.~~=lapl

at ay ax ax ay P at
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The boundaryconditionsto be satisfiedare then

T

V(x,o,t) = o

()
~
3YY=0 = 0

()

al >

z
= Ul(x,t)

y+.

h(x,O,t) = ~

h(x,rn,t)= hl(x,t)

4

For the case of either the shock wave or the rarefaction wave

NACATN 3944

(E8)

propagating into air at rest in a uniform channel, the free-stream
quantities become functions only of the parsmeter ~ = ~. The equa-

E
tions of motion may be written in similarity form
parameter. After introduction of the identities:

by using this conical

‘= &t

tt =

(E9)

—
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the transformation equations from the x,Y,t coordinate system to the

E)qJt coordinate system me

()~=
at

x, Y

()~ax t,y =

~()ay X,t =

(%),,R)X+($)E,JS!)Y‘(k),,,=-%$),,t-

M),,t+(i),,,

($),,W =*($)v,t

(H,,tw = *(i),,t

Equations (E7a) ad (En) are then transformed to the E,q,t coor-
dinate systemby using eqwtions (E9) snd (E1O), the equation of state,

=4 @, and so forth; the following equations resultP 77

(E12)
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with the boundaryconditions

f(g,o) = o

NACA TN 3944

●

(E13)
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APPENDIX F

DERIVATION OF INTEGML RELATIONSHIPS AT A DISCONTINUITY

IN T3E OUTER FREE-STREAM FIOW

h the outer inviscid flow, consider an arbitrary discontinuity
which moves with a velocity V* relative to the wall. The mass flux
through this discontinui~ in an arbitrary distance L normal to the
wall, L>> b, maybe expressed in a coordinate system moving with a
velocity V* as

J(Mass flux)(peae)”l= oL--pu* dy (Fl)

The velocity relative to the discontinuity is u* = y - I* and the
bars denote nondimensionalization by the reference d=sity and velocity

(peaG)” Equation (Fl) may be evaluatedby substitution and use of the

definitions of 5* snd - to give

(Mass flux)(peac)-l=
@ -‘9+ w - ’15*+ (’l - ‘*)’lJL w ‘F’)

The momentum flux may likewise be expressed as

L
(Momentum flux)(pcae2)-1 =

J(
)

~Q*’ + L Q

o– PEac2
(F3)

-)V* ‘ +

L

h a similar msnner the ener~ flux into
evaluated as

(Fk)

the discontinuity may be

(F5)
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[ 1
h:EQ+(H*)3w-#M+‘1aG2 2

L

J’[

‘1 (JZl- X*)
Ql~+ 2

-1
(

v*) dy
o

%--
at —

where

(F6)

(m’)

If the discontinuity is assumed to have zero thickness and to contain
no sources or sinks, the entering flux must equal that leaving since heat
transfer and wall shear have zero length in which to influence the flow.

—

If the conditions on opposite sides of the discontinuity are denoted as
—

states i and j, the following equalities must apply:
—

.

Mass: .—

[( )v++ hi*
uil-—

]=uj~%)%%.~]+u~ ~ vi* - %*

(m)
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Ener~:

J

-1

L

.

.

*

.
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